• Title/Summary/Keyword: Heat source length

Search Result 100, Processing Time 0.022 seconds

A Novel Cooling Method by Acoustic Streaming Induced by Ultrasonic Resonator (초음파 진동자에 의해 유도된 음향유동을 이용한 첨단 냉각법)

  • 노병국;이동렬
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.217-223
    • /
    • 2003
  • A novel cooling method induced by acoustic streaming generated by ultrasonic vibration at 30㎑ is presented. Ultrasonic vibration is obtained by piezoelectric devices and the maximum vibration amplitude of 50 m is achieved by including a horn, mechanical vibration amplifier in the system and making the complete system resonate. To investigate the enhancement of heat transfer capability of acoustic streaming, the temperature variations of heat source and air in the vicinity of heat source are measured in real-time. It is observed that acoustic streaming is instantly induced by ultrasonic vibration, resulting in the significant temperature drop due to the bulk air flow caused by acoustic streaming. In addition, it is observed that the cooling effect on the heat source is maximized when the gap between the ultrasonic vibrator and heat source coincides with the multiples of half-wavelength of the ultrasonic wave. This fact results from the resonance of the sound wave. The theoretical analysis of the dependence on the gap is also accomplished and verified by experiment. The advantage of the proposed cooling method by acoustic streaming is noise-free due to the ultrasonic vibration and maintenance-free because of the absence of moving parts. Moreover. This cooling method can be utilized to the nano and micro-electro mechanical systems, where the fan-based conventional cooling method can not be employed.

Effect of length scale parameters on transversely isotropic thermoelastic medium using new modified couple stress theory

  • Lata, Parveen;Kaur, Harpreet
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.17-26
    • /
    • 2020
  • The objective of this paper is to study the deformation in transversely isotropic thermoelastic solid using new modified couple stress theory subjected to ramp-type thermal source and without energy dissipation. This theory contains three material length scale parameters which can determine the size effects. The couple stress constitutive relationships are introduced for transversely isotropic thermoelastic solid, in which the curvature (rotation gradient) tensor is asymmetric and the couple stress moment tensor is symmetric. Laplace and Fourier transform technique is applied to obtain the solutions of the governing equations. The displacement components, stress components, temperature change and couple stress are obtained in the transformed domain. A numerical inversion technique has been used to obtain the solutions in the physical domain. The effects of length scale parameters are depicted graphically on the resulted quantities. Numerical results show that the proposed model can capture the scale effects of microstructures.

An Experimental Study on the Thermal Performance of a Concentric Annular Heat Pipe

  • Boo Joon Hong;Park Soo Yong;Kim Do Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1036-1043
    • /
    • 2005
  • Concentric annular heat pipes (CAHP) were fabricated and tested to investigate their thermal characteristics. The CAHPs were 25.4 mm in outer diameter and 200 mm in length. The inner surface of the heat pipes was covered with screen mesh wicks and they were connected by four bridge wicks to provide liquid return path. Three different heat pipes were fabricated to observe the effect of change in diameter ratios between 2.31 and 4.23 while using the same outer tube dimensions. The major concern of this study was the transient response as well as isothermal characteristics of the heat pipe outer surface, considering the application as uniform heating device. A better performance was achieved as the diameter ratio increased. For the thermal load of 180 W, the maximum temperature difference on the outer surface in the axial direction of CAHP was $2.3^{\circ}C$ while that of the copper block of the same outer dimension was $5.9^{\circ}C.$ The minimum thermal resistance of the CAHP was measured to be $0.004^{\circ}C/W.$ In regard to the transient response during start-up, the heat pipe showed almost no time lag to the heat source, while the copper block of the same outer dimensions exhibited about 25 min time lag.

Characteristics of Smoke Propagation in Railway Tunnels with Rescue Station (구난역을 갖는 철도 터널 내부의 연기거동 특성)

  • Jang, Won-Cheol;Kim, Dong-Woon;Lee, Seong-Hyuk;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.13-18
    • /
    • 2009
  • The main objective of the present study is to investigate smoke propagation in railway tunnels with rescue stations. In particular, based on measurement of HRR (heat release rate) for pool fires formed at different locations, the influence of fire source location on smoke behavior is examined. The fuel is n-heptane and pool fires are generated with a square length 4cm. With the use of MVHS (Modified Volumetric Heat Source) model for fire source, extensive numerical simulations are performed by using the commercial code FLUENT (Ver.6.3) Predicted smoke temperatures and smoke propagation are discussed. From numerical predictions, it is found that ventilation systems may be necessary in the railway tunnels because the smoke moves along the tunnel, and consequently it enters the non-accident tunnel. It is also confirmed that the cross-passage and fire protection wall systems contribute to control the smoke.

Performance Analysis of an Earth Tube Heat Exchanger(I) -Temperature Variation Characteristics and Heat Exchange Performance on the Mode of Continuous Operation (지중매설관 열교환장치의 성능분석(I) -연속운전실험에서의 온도특성 및 열교환성능-)

  • Kim, Y.B.;Paek, Y.
    • Journal of Biosystems Engineering
    • /
    • v.21 no.4
    • /
    • pp.436-448
    • /
    • 1996
  • An earth tube soil air heat exchange system was designed, installed and operated as a single pass heat exchanger to utilize the geothermal energy as an natural energy source. This study was undertaken to investigate the potential of the heating and cooling, energy gain, heat exchange efficiency and coefficient of performance of the system. The system consisted of 30m in length and 30cm in diameter polyethylene pipes buried 2m deep in soil. Maximum heating and cooling performance were 2.51㎾ and 1.26㎾ at the air mass rate of 21cmm. Energy gain and coefficient of performance were the function of temperature difference between outside air and soil temperature. They were expressed as Q=0.33$ imes$$Delta T_{max}$+0.134(㎾) for energy gain and COP=0.44$ imes$$Delta T_{max}$+0.178 for coefficient of performance with correlation factor of 0.95. The mean of heat exchange efficiencies was 85.6%.

  • PDF

An Experimental Study on the Effect of Ground Heat Exchanger to the Overall Thermal Conductivity (지중열교환기 설치 조건이 지중 유효 열전도도에 미치는 영향에 관한 실험적 연구)

  • Kong, Hyoung-Jin;Lim, Hyo-Jae;Choi, Jae-Ho;Sohn, Byong-Hu
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.45-51
    • /
    • 2009
  • A ground-loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. The size and performance of this heat exchanger is highly dependent on ground thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U-tube configurations on ground effective thermal conductivity. In this study, thermal response tests were conducted using a testing device with 9-different ground-loop heat exchangers. From the experimental results, the length of ground-loop heat exchanger affects to the effective thermal conductivity. Among the various grouting materials, the bentonite-based grout with silica sand shows the largest thermal conductivity value.

  • PDF

A Study on Contacts for Organic thin-film transistors fabricated by Screen Printing Method (스크린 인쇄법에 의해 제작된 유기 박막 트랜지스터용 전극에 관한 연구)

  • Lee Mi-Young;Nam Su-Yong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.591-592
    • /
    • 2006
  • We studied about the manufacture of the drain-source contacts for OTFTs(organic thin-film transistors) by using screen printing method. The conductive fillers used Ag and carbon black. The conductive contacts with $100{\mu}m$ of channel length were screen printed on a silicon dioxide gate dielectric layer and, the pentacene semiconductor was deposited via vacuum deposition. As a result of studying various conductive pastes, we could obtain the OTFTs which exhibited field-effect behavior over arrange of drain-source and gate voltages, similar to devices employing deposited Au contacts. By using screen-printing with conductive paste, the contacts are processed at low temperature, thereby facilitating their integration with heat sensitive substrates.

  • PDF

Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature

  • Lata, Parveen;Kaur, Harpreet
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.213-221
    • /
    • 2021
  • The objective of this paper is to study the deformation in a homogeneous isotropic thermoelastic solid using modified couple stress theory subjected to ramp-type thermal source with two temperature. The advantage of this theory is the involvement of only one material length scale parameter which can determine the size effects. Laplace and Fourier transform technique is applied to obtain the solutions of the governing equations. The components of displacement, conductive temperature, stress components and couple stress are obtained in the transformed domain. A numerical inversion technique has been used to obtain the solutions in the physical domain. The effect of two temperature is depicted graphically on the resulted quantities. Numerical results show that the proposed model can capture the size effects of microstructures.

A Development of Overlay GTAW Welding System for Pipe Inside Straight Process (직선형 프로세스 파이프 내면 오버레이 GTAW 용접시스템 개발)

  • Eun, Jong-Mok;Lee, Young-Kyu
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.4-8
    • /
    • 2014
  • In this research, GTA overlay welding system is developed for inside of straight pipes in various diameter. It can be applied to oil, ship building and plant industry, especially pipes connected to pressure vessels, for the purpose of cost reduction by cladding inside of pipes with corrosion and heat resistant alloys such as stainless steel or Inconel. Developed system consists of GTA power source, torch, wire feeding system, automatic arc length adjusting device, CCD camera and cooling unit. Two types of pipe inside overlay welding system are developed. One is for maximum 3m pipe length with 3 inch ~ 12 inch pipe outer diameter. Another type can be applied to maximum 12m pipe length with 7 ~ 24 inch OD. Developed system successfully produced inside cladded pipe and the results are shown through cross sectional images of the pipes.

The Effects of the Installation Conditions of Ground Loop Heat Exchanger to the Thermal Conductivity and Borehole Resistance (지중열교환기 설치 조건이 지중 유효 열전도도와 보어홀 열저항에 미치는 영향)

  • Lim, Hyo-Jae;Kong, Hyoung-Jin;Kang, Sung-Jae;Choi, Jae-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • A ground loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. A proper design requires certain site specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U tube configurations on ground effective thermal conductivity and borehole thermal resistance. In this study, thermal response tests were conducted using a testing device to 9 different ground loop heat exchangers. From the experimental results, the length of ground loop heat exchanger affects to the effective thermal conductivity. The results of this experiment shows that higher thermal conductivity of grouting materials leads to the increase effective thermal conductivity from 22 to 32%. Also, mounting spacers have increased by 14%.