• Title/Summary/Keyword: Heat room

Search Result 1,161, Processing Time 0.027 seconds

Effect of Addition of Enzyme-Resistant Rice RS3 on Quality and Textural Characteristics of Madeleine (효소저항성 쌀전분의 첨가가 마들렌의 품질 및 텍스처 특성에 미치는 영향)

  • Kim, Wan-Soo
    • Korean Journal of Human Ecology
    • /
    • v.19 no.1
    • /
    • pp.191-201
    • /
    • 2010
  • This study attempted to examine the application of retrograded starch (RS3) isolated from rice flour into Madeleine which is easy to make, supply enough energy and micro nutrients with adequate drinks, and prevent an adult disease. This could be a popular food to anyone regardless of age and gender who avoid rice and become high value-added, processed rice foods. For this, control Madeleine was made from wheat flour and an experimental one was made from 5 or 10% rice RS3 addition as well as wheat flour. Four different types of rice were produced from Premium Ho-Pyong Rice, that is, dry milled rice flour(RFD), soaked for 8 hours and milled, followed by air-dried rice flour(RFW), rice starch(RST), and retrograded rice starch or enzyme-resistant starch(RS3). The results found were as follows: Proximate compositions were decreased with soaking to make RFW, RST and RS3, compared to RFD. RS3 had the highest L, +a and ${\Delta}E$ with the lowest +b, changing it to a dark color, explaining the need for heat control during processing. At $80^{\circ}C$, the swelling power was shown in the order of RST>RFW>RFD>RS3 and the solubility of RS3 was the highest. There were significant differences in viscosities of peak, trough, cold, breakdown and total setback of all rice samples using RVA (p<0.001). Due to the pH of RS3, the Madeleine batter became acidic (p<.01) and expanded, resulting in more air cells and open texture. With an increasing RS3 level in Madeleine, several textural attributes among 'fresh' and 'stored at room temperature' Madeleine samples were significantly different by using Texture Analyzer. While the addition of RS3 in Madeleine did not significantly affect the sensory evaluation, indicating RS3 isolated from rice as a beneficial ingredient for processed rice products.

Degradation Evaluation of Aged 1Cr-1Mo-0.25V Steel Using Coercive Force (보자력을 이용한 1Cr-1Mo-0.25V강 인공시효재의 열화도 평가)

  • Ryu, K.S.;Nahm, S.H.;Kim, Y.I.;Yu, K.M.;Son, D.R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.4
    • /
    • pp.288-293
    • /
    • 1999
  • The integrity of the turbine rotors can be assessed by the coercive force and Vickers hardness of the aged rotors at service temperature. The coercive force measurement system was constructed in order to evaluate material degradation nondestructively. The test specimen was 1Cr-1Mo-0.25V steel used widely for turbine rotor material, and then the seven kinds of specimens with different degradation levels were prepared by the isothermal heat treatment at $630^{\circ}C$. The coercive force of the test materials was measured at room temperature. Vickers hardness and coercive force decreased with the increase of degradation. The relationship between Vickers hardness and coercive force was investigated. The degradation of test material may be determined nondestructively by the relationship between Vickers hardness and coercive force.

  • PDF

Thermodynamic Properties of Ubiquitin Folding Intermediate (Ubiquitin 폴딩 intermediate의 열역학적 특성)

  • Park, Soon-Ho
    • Applied Biological Chemistry
    • /
    • v.47 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • Thermodynamic properties of ubiquitin transient folding intermediate were studied by measuring folding kinetics in varying temperatures and denaturant concentrations. Through quantitative kinetic modeling, the equilibrium constant, hence folding free energy, between unfolded state and intermediate state in several different temperatures were calculated. Using these values, the thermodynamic parameters were estimated. The heat capacity change $({\Delta}C_p)$ upon formation of folding intermediate from unfolded state were estimated to be around 80% of the overall folding reaction, indicating that ubiquitin folding intermediate is highly compact. At room temperature, the changes of enthalpy and entropy upon formation of the intermediate state were observed to be positive. The positive enthalpy change suggests that the breaking up of the highly ordered solvent structure surrounding hydrophobic side-chain upon formation of intermediate state. This positive enthalpy was compensated for by the positive entropy change of whole system so that formation of transient intermediate has negative free energy.

Mechanical Behavior of Polymer Foam Reinforced with Silica Aerogel (실리카 에어로겔을 첨가한 폴리머 폼의 기계적 특성)

  • Ahn, Jae-Hyeok;Kim, Jeong-Hyeon;Kim, Jeong-Dae;Park, Sungkyun;Park, Kang Hyun;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.413-418
    • /
    • 2017
  • In the present study, silica-aerogel-polyurethane foams were synthesized to improve the mechanical characteristics and insulation performance of the polyurethane foam applied to a liquefied natural gas carrier at a cryogenic temperature of $-163^{\circ}C$. A silica-aerogel-polyurethane foam bulk was prepared using a homogenizer by varying the weight ratio of the silica aerogel (0, 1, 3, and 5 wt%), while maintaining the contents of the polyol, isocyanate, and blowing agent constant. Compression tests were performed at room and cryogenic temperatures to compare the mechanical properties of the silica-aerogel polyurethane foams. The internal temperature of the universal testing machine was maintained through the cryogenic chamber. The thermal conductivity of the silica-aerogel-polyurethane foam was measured using a heat flow meter to confirm the insulation performance. In addition, the effect of the silica aerogels on the cells of the polyurethane foam was investigated using FE-SEM and FTIR. From the experimental results, the 1 wt% silica aerogel polyurethane foam showed outstanding mechanical and thermal performances.

Development of Continuous SiC Fiber Reinforced Magnesium Composites Using Liquid Pressing Process (액상가압성형 공정을 이용한 SiC 연속섬유 강화 마그네슘 복합재료 개발)

  • Cho, Seungchan;Lee, Donghyun;Lee, Young-Hwan;Shin, Sangmin;Ko, Sungmin;Kim, Junghwan;Kim, Yangdo;Lee, Sang-Kwan;Lee, Sang-Bok
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.247-250
    • /
    • 2020
  • In this study, the possibility of manufacturing a magnesium (Mg) composites reinforced with continuous silicon carbide (SiC) fibers was examined using a liquid pressing process. We fabricated uniformly dispersed SiC fiberAZ91 composites using a liquid phase pressing process. Furthermore, the precipitates were controlled through heat treatment. As a continuous Mg2Si phase was formed at the interface between the SiC fiber and the AZ91 matrix alloy, the interfacial bonding strength was improved. The tensile strength at room temperature of the prepared composite was 479 MPa, showing excellent mechanical properties.

The Effects of 3-(3,4-dichloro phenyl)-1,1-dimethylurea on the Cure of Epoxy/Dicyandiamide System (3-(3,4-dichloro phenyl)-1,1-dimethylurea이 Epoxy/Dicyandiamide계의 경화에 미치는 영향)

  • Kim, Hyung-Soon;Kim, Wan-Young;Kim, Young-Ja
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.963-969
    • /
    • 1996
  • Cure characteristics of DGEBA(diglycidyl ether of bisphenol A)/dicy(dicyandiamide) system containing diuron(3-(3,4-dichloro phenyl) -1,1-dimethylurea) as an accelerator was investigated. The system has shelf life of six months because dicy is insoluble in liquid/solid resins at room temperature. It is generally known that dicy is an adequate curing agent for one component adhesive due to its highly latent property. With increasing the amount of added dicy, reaction heat of DGEBA/dicy system increased and degree of conversion was not varied. For DGEBA/dicy/diuron system, cure temperature decreased about $40^{\circ}C$ and cure reaction became fast by the addition of diuron which activates dicy. $T_g$ of the mixed resin decreased with the amount of accelerator. which was interpreated with molecular structure forming loose chain. Cure kinetics of DGEBA/dicy and DGEBA/dicy/diuron system were explained using Kamal's autocatalytic reaction model. The effect of acceleration was confirmed with that reaction model.

  • PDF

A study on the measurement of thermophysical properties of ${Al}_{2}{O}_{3}, {Si}_{3}{N}_{4}$ and SiC series by a single rectangular pulse heating (방향파 펄스 가열에 의한 ${Al}_{2}{O}_{3}, {Si}_{3}{N}_{4}$, SiC 계열의 열물성치 측정에 관한 연구)

  • 차경옥;장희석;이흥주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.145-156
    • /
    • 1990
  • In this study, thermophysical properties of the engineering ceramic materials such as $Al_{2}$O$_{3}$, Si$_{3}$N$_{4}$ and SiC were measured b y a single rectangular pulse heating method. The values of thermal diffusivities, specific heats, and thermal conductivities were measured as a function of temperature ranging form room temperature to 1300K. The measured thermal properties of one group of ceramic material were compared with those of other group and discussed in detail in connection with the chemical composition. Thus, some criteria for thermal design with the engineering ceramic materials were proposed.

Effect of Processing on the Content of Sulforaphane of Broccoli (브로콜리의 조리가공에 따른 sulforaphane 함량)

  • 김미리;이근종;김혜영
    • Korean journal of food and cookery science
    • /
    • v.13 no.4
    • /
    • pp.422-426
    • /
    • 1997
  • Fresh broccoli is known to have the highest content of sulforaphane (S-methylsulfinylbutyl isothiocyanate) among all vegetables. Since isothiocyanates are formed from myrosinase-catalyzed hydrolysis of glucosinolates during tissue destruction of broccoli, the formation of sulforaphane in the extract of broccoli was examined under various processing conditions. The amount of sulforaphane in processed broccoli was measured using GC/MS analysis. Among fresh, dried, and boiled broccoli fresh broccoli exhibited the highest content of sulforaphane. Sulforaphane was maximally produced from the homogenate in 0.1 M phosphate buffer containing 1 mM Vitamin C stored at room temperature for 1 hr. In boiled broccoli, the amount of sulforaphane decreased as the boiling time increased, and reached to 10% of control after 30 min boiling. The amount of sulforaphane was decreased remarkably in dried broccoli in which freeze-dried and heat-dried broccoli had about 50% and 30% of fresh ones, respectively.

  • PDF

Establishment of Long-term Storage Condition of Fresh Red Pepper Paste (생홍고추 페이스트의 장기 저장조건 설정)

  • Kwon, Dong-Jin;Jo, Jin-Ho;Kim, Hyun-Ku;Park, Mu-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.415-420
    • /
    • 1990
  • To prevent red pepper from post harvest decay and to reduce the labor and drying expenses, the red pepper paste was directly prepared from fresh red pepper. The characteristics of red pepper paste and processing properties were investigated, and the effect of salt and heat on product quality during processing and storage were studied. After the processed red pepper paste was stored at room temperature, $5^{\circ}C\;and\;-3^{\circ}C$ without light for 6 months, kimchi was prepared with the stored red pepper paste to evaluate any quality change. The weight and pH of pericarp were 73.2% of total and 5.0, respectively. Addition of 10% salt to the paste decreased the pH of paste, reducing the sterilization time down to 10 min against growth of Clostridium botulinum. Thermal diffusivity of paste after pasteurization was $1.190{\times}10cm^{-7}/sec$, which was lower than control, probably due to air in pouch. The red pepper paste with 10% salt added, followed by sterilization for 10 min, could be preserved for over 6 months at $5^{\circ}C$.

  • PDF

The Effect of Napping of Knitted Fabric on Wear Sensation (편성물의 기모가공이 착용감에 미치는 영향)

  • Lee Jong-Min;Lee Soon-Won
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.11 no.3 s.25
    • /
    • pp.41-55
    • /
    • 1987
  • The purpose of this study is to investigate the effects of napping of knitted fabric on wear sensation and physiological responses. Experimental garments were four types of warm-ups made of either $100\%$ PET or $65/35\%$ P /C and either napped or unnapped respectively. Two healthy young female adults were chosen as subjects for the experiment. Experimental room conditions were as follows: Temp., $22\pm0.5^{\circ}C$ R.H., $54\pm3\%$ and Air Velocity, 0.25m/ sec or 2. 86m/sec. The subjects exercised on bicycle ergometer and rested alternatively for totally 45-min. The results are summarized as follows. 1) With napped Warm-up, chest, back, mean skin temp. and microclimates, i.e., temp., relative humidity and water vapor pressure inside the clothing, were higher than with unnapped warm-up. And there was no difference in pulse rate between napped and unnapped warm-ups. 2) Wear sensations of thermal, humidity, tactile and comfort were 'more hot' and 'more uncomfortable' in 0.25m/sec air velocity. but in 2.86m/sec condition the tactile sensation was 'better' and 'more comfortable' with napped warm-ups. According to Pearson's Correlation, among various kinds of wear sensations, tactile is most related with comfort. From these results, it can be concluded that napped fabric decreases the rate of heat trans? mission and moisture diffusion through the clothing. Therefore skin and body temp. and temp., R.H., Vapor Pressure inside the clothing are increased.

  • PDF