• Title/Summary/Keyword: Heat resisting steel

Search Result 51, Processing Time 0.023 seconds

Effect of Forging Condition on the Microstructure and Mechanical Properties of Centrifugal Casted 9Cr-1Mo Heat-Resisting Steel (9Cr-1Mo 내열강의 미세조직 및 기계적 성질에 미치는 원심주조 후 단조 조건의 영향)

  • Lee, S.M.;Kim, Y.K.;Choi, H.G.;Lee, J.K.;Cho, Y.K.;Park, Y.T.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.84-89
    • /
    • 2010
  • The effect of forging condition on the microstructure and mechanical properties of 9Cr-1Mo heat-resisting steel was investigated. Microstructure of centrifugal casted 9Cr-1Mo heat resisting steel and forged heat resisting steel are consisted of martensite. With the increase of forging ratio, tensile strength and hardness increased, while elongation and impact value decreased. By increasing of forging starting temperature and finishing temperature, tensile strength and hardness increased, while elongation and impact value decreased. We obtained the optimum forging conditions as follow, forging ratio is 30%, forging starting temperature is $1200^{\circ}C$ and forging finishing temperature is $950^{\circ}C$.

Turning Characteristics of Martensitic Heat Resisting Steel (마르텐사이트계 내열강의 선삭 가동 특성에 관한 연구)

  • 채왕식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.171-176
    • /
    • 1997
  • In this paper, We have analyzed dynamic characteristics of cutting force. Test materials are used martensitic heat resisting steel, STS420J2. The obtained results are as follows: 1. Cutting force is smaller make small feed when feed speed make a change. 2. Principal cutting force is smaller make small cutting speed when feed speed make a change.

  • PDF

A Study on the Machining Characteristics by the Internal Quality of Heat Resisting Steel (내열강의 내부품질에 따른 절삭가공 특성에 관한 연구)

  • 채왕석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.24-29
    • /
    • 2000
  • This paper is experimental study of machining characteristics about martensitic heat resisting steel STR11. Machining characteristics are different according to internal quality(chemical compositions, microscopic structure and nonmetallic inclusion) mechanical properties(tensile strength value impact value and hardness) and dynamic cutting force. Following are the results : 1. In analyzing internal quality test materials have typical martensite structure and a minute needle-shaped structure. 2. Tensile strength and reduction of area and hardness are larger. But values of elongation and impact values are smaller. Fracture surface of tensile specimen is ductile. 3, Cutting force is decreasing with cutting speed increasing 4. Cutting force is increasing with feed speed increasing.

  • PDF

GasNitriding Bechavior Austenitic High Cr Steels (오스테나이트계 고크롬강의 가스질화거동에 관한 연구)

  • Kim, Y.H.;Kim, D.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.258-267
    • /
    • 1998
  • For the purpose of investigating the growth characteristics and composition of nitrides, gas nitridings of the austenitic stainless steel, STR 36 heat resisting steel and martensitic stainless steel are investigated at the temperature ranges between $500^{\circ}C$ and $675^{\circ}C$ for 5hours under the $75%NH_3+5%CO_2+20%$Air gas atmosphere. When gas nitriding the austentic stainless steel and STR 36 heat resisting alloy, the abnormal growth behavior of compound layer deviating from the conventional diffusion law with increasing temperature appears, while the compound layer of martensitic stainless steel shows the normal diffusional growth behavior. From the examination of microstructure, X-ray diffraction and hardness test, it is concluded that the abnormal growth behavior of compound layer with increasing temperature induces from the formation and dissolution of CrN and ${\gamma}^{\prime}-Fe_4N$ at the nitriding temperature ranges of $600{\sim}650^{\circ}C$.

  • PDF

A Study on the Fatigue Life Characteristics of Heat-Resisting Steel (내열강재의 마찰용접에 따른 피로수명 특성에 관한 연구)

  • 이동길;이상열;정재강
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.124-126
    • /
    • 2000
  • The fatigue crack propagation characteristics were investigated for two kind of heat-resisting steel(STR3 and STR35) commonly using in valve material of vehicles. From the experiment, the fatigue life of the specimens notched at bonded line was shown about 19.7% and 72.2% lower and the specimens notched at 1.0mmdistance from bonded line was shown about 25.2% and 99.1% higher than that of the base metal respectably.

  • PDF

Effect of Microstructure on the Damping Capacity of 12Cr Martensitic Heat-resisting Steel (12Cr 마르텐사이트계 내열강의 감쇠능에 미치는 미세조직의 영향)

  • Lee, S.M.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.78-83
    • /
    • 2010
  • This study was carried out to investigate the effect of microstructure on the damping capacity of 12Cr martensite heat-resisting steels, in case of the specimen with martensite phase contained the volume faction of ferrite phases, under 5%. The damping capacity was decreased with the increase of solution treatment temperature and time. While it was increased with the increase of tempering temperature and time. The damping capacity was higher in case of specimen with martensite single phase structure than the specimen with martensite phase contained of ferrite phases.

A Study on the Internal Quality and the Machining Characteristics of Martensitic Heat Resisting Steel (마르텐사이트계 내열강의 금속 및 기계적 특성에 관한 연구)

  • 채왕석;권용기;김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1073-1077
    • /
    • 1997
  • In this paper, we have studied internal quality including chemical compositions, microscopic structure and nonmetalic inclusion of test materials. We have analyzed machining characteristics including tensile strength value, impact value, hardness value etcs. Test materials are usd martensitic heat resisting steel, STR11 and STS420J2. The obtined results are as follows : 1. In analyzing internal quality, STR11 and STR420J2 have typical martensite structure and a minute needle-shaped structure. 2. Tensile strength and reduction of area and hardness value are large STR11 than STS420J2. But elongation impact are smaller STR11 than STS420J2. 3. Fracture surface of tensile speciman is ductile in STR11 and STS420J2.

  • PDF

Microstructural Characterization for Structural Health Monitoring of Heat-Resisting Rotor Steels (로터용 내열강의 구조 건전성 모니터링을 위한 미세 조직 평가)

  • Kim, C.S.;Byeon, Jae-Won;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.177-183
    • /
    • 2008
  • The typical heat-resisting rotor steels such as 2.25CrMo, 9CrMo and 12CrW steel were experimentally studied in order to understand their materials degradation under high temperature and pressure during the long-term service, and then use the basic studies for the structural health monitoring. In order to monitor the materials degradation, it was conducted by the isothermal aging for 2.25CrMo steel, creep-fatigue for 9CrMo steel and creep for 12Cr steel with the incremental step test. The ultrasonic wave properties, electrical resistivity and coercivity were interpreted in relation to microstructural changes at each material and showed strong sensitivity to the specific microstructural evolution.

Study on Dissimilar Friction Welding Optimization of Heat Resisting Steels for Turbine and Real-Time Quality Evaluation by Ascoustic Emission(I) - FRW Optimization (터빈용 내열강의 이종재 마찰용접 최적화와 AE에 의한 품질 실시간 평가에 관한 연구(I) - 마찰용접 최적화)

  • Park, Hyung-Dong;Oh , Sae Kyoo;Kwon, Sang-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.83-91
    • /
    • 1999
  • Taking a view of joining by welding the IN713C to SCM440 and SCM415 steel in production of turbochargers, the frictin welding process may be utilized as a new approach for joining them of other conventional welding processes. It is because the friction welding has more technical and technical and economic advantages than the other welding processes. As this welding process has the characteristics such as curtaliment of production time and materials and cost reduction, etc.. So, this paper deals with determining the preper friction welding condition and analyzing various mechanical properties of friction welded joints of the super heat resisting steel to alloy stee(IN713C to SCM440 and SCM415). And the in-process real-time weld quality evaluation technique by acoustic emission during friction welding of IN713C to SCM440 and SCM415 steels with higher confidence and relibility has been much required even though it might be the first trial approach for developing it. Then, this first study aimed to develop the optimization of dissimilar friction welding of heat resisting steels (INC713 to SCM440, SCM415) for turbine, considering on strength and toughness.

  • PDF

Study of the Tribological Characteristics Based on the Hardness of the Brake Disk between the Sintered Metallic Friction Material and the Heat-resisting Steel Disks (디스크 경도에 따른 소결마찰재와 내열강 디스크의 마찰·마모 특성)

  • Na, Sun Joo;Park, Hyoung Chul;Kim, Sang Ho
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.42-49
    • /
    • 2015
  • Because of the growing need for high-speed transport options such as trains and aircraft, there is increasing demand for technology related to high-speed trains. Among them, braking systems are important in high-speed trains in terms of reliability. Especially, the disk brake system, in use in most high-speed trains, transforms kinetic energy into thermal energy and noise. Therefore, the material properties of both the friction materials and disks are expected to influence the tribological characteristics. In this paper, the tribological characteristics depend on the hardness of the brake disks between the Cu-based sintered metallic friction material and the heat-treated heat-resisting steel disks. A lab-scale dynamometer used to perform braking tests at a variety of braking speeds using dry conditions. The test results revealed that the hardness of the disks affects the friction coefficients, friction stabilities, and wear rates. Thus, the brake system using the heat-resisting steel disk requires proper heat-treatment. These differences are considered to be caused by the change in tribological mechanisms and the generation of an oxide layer on the friction surfaces. The oxide layers on the friction surfaces are confirmed to Fe2O3 by x-ray diffraction (XRD) and scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) analysis.