• Title/Summary/Keyword: Heat resistance reliability

Search Result 84, Processing Time 0.026 seconds

Improvement of the Heat Resistance Reliability of an Axial Smoke Exhaust Fan (배연용 축류팬의 내열 신뢰성 향상)

  • Hur, Jin-Huek;Heo, Ki-Moo;Moon, Seung-Jae;Lee, Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.656-662
    • /
    • 2009
  • In this paper, the heat resistance reliability of an axial smoke exhaust fan was investigated. An axial smoke exhaust fan should be capable of operating at $250^{\circ}C$ for 2 hours. The heat resistance reliability was evaluated by the heat resistance reliability test. A B10 life with a 90% confidence level was estimated to be about 48 minute. The failure occurred in the motor due to high temperature. The main failure mechanisms of the motor were melting of bond and insulating paper and burning of insulating materials in the coil. The heat resistance reliability was improved by changing the way to unite the core and the coil and by replacing the insulating paper and the insulating materials of the coil. A B10 life with a 90% confidence level of a modified axial smoke exhaust fan was estimated to be over 120 minute.

INFLUENCE OF THE THERMAL CONTACT RESISTANCE ON THE FIN-TUBE HEAT EXCHANGER PERFORMANCE (핀-관 열교환기의 열 접촉저항이 전열성능에 미치는 영향 연구)

  • Yoo, S.S.;Lee, M.S.;Hwang, D.Y.;Han, B.Y.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.135-144
    • /
    • 2009
  • In this study, the heat transfer and fluid flow characteristics of a condenser for a refrigerator are analyzed with the numerical method. The main objective of the study is to obtain basic data in order to develop a new type of condenser focused on an influence of thermal resistance of air side and thermal contact resistance on the heat transfer performance. The CFD technique was used for whole study, and experiments were performed in order to verify the reliability of the numerical analysis and predict the thermal contact resistance. In this study, a heat exchanger sample was made of a part of condenser to make the experimental and numerical analysis simple and efficient. Water was used for the inner working fluid of the heat exchanger, and an experimental apparatus was composed concisely. A heat exchanger sample of tube type was used to verify the reliability of numerical analysis, and a heat exchanger of fin and tube type was used to predict the ratio of thermal contact resistance to the overall thermal resistance.

  • PDF

INFLUENCE OF THE THERMAL CONTACT RESISTANCE ON THE FIN-TUBE HEAT EXCHANGER PERFORMANCE (핀-관 열교환기의 열 접촉저항이 전열성능에 미치는 영향 연구)

  • Yoo, S.S.;Lee, M.S.;Han, B.Y.;Park, H.K.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.46-55
    • /
    • 2010
  • In this study, the heat transfer and fluid flow characteristics of a condenser for a refrigerator are analyzed with the numerical method. The main objective of the study is to obtain basic data in order to develop a new type of condenser focused on an influence of thermal resistance of air side and thermal contact resistance on the heat transfer performance. The CFD technique was used for whole study, and experiments were performed in order to verify the reliability of the numerical analysis and predict the thermal contact resistance. In this study, a heat exchanger sample was made of a part of condenser to make the experimental and numerical analysis simple and efficient. Water was used for the inner working fluid of the heat exchanger, and an experimental apparatus was composed concisely. A heat exchanger sample of tube type was used to verify the reliability of numerical analysis, and a heat exchanger of fin and tube type was used to predict the ratio of thermal contact resistance to the overall thermal resistance.

A study of guaranteeing reliability for IC of electronic instruments according temperature

  • Yoon, Geon;Park, Yong-Oon;Kwon, Soon-Chang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.320-323
    • /
    • 2005
  • This paper discusses heat problem of IC, which composes the electronic instruments, to guarantee reliability of electronic instruments. And also proposes the unified equivalent model for various electronic instrument products to guarantee reliability and life of its parts. Because electronic instruments are down sizing and operated with high frequency, the internal temperature of electronic instruments is rising steadily. The internal temperature of the electronic instruments gives a big effect to electronic instrument's reliability and life. The semiconductor parts are the representative heat generation parts because of its complicated function, high frequency and high density. Consequently, guaranteeing reliability and life of electronic semiconductor is the important start point in securing the reliability and life of the electronic instrument product. Unfortunately, there are many factors, which affect heat dissipation efficiency. The heat dissipation efficiency follows the environment where the electronic instrument products are used. Therefore it is very difficult to define reliability and life of the electronic manufactures. Electronic instrument products are composed of printed circuit board (PCB), integrated circuit (IC), resistance, and capacitor and so on. And there are superposed thermal resistances, because the parts are arrayed on the printed circuit board (PCB), Therefore the total thermal resistance is variable. Consequently it cannot have same thermal model for each electronic instrument products. In the next part, we propose the unified equivalent model for various electronic instruments. And using the proposed equivalent model proofs the method for analysis reliability of electronic parts.

  • PDF

Study on Properties and Accelerated Life-time Test of Rubber O-ring by Temperature Stress

  • Shin, Young-Ju;Kang, Bong-Sung;Chung, Yu-Kyung;Choi, Kil-Yeong;Shin, Sei-Moon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.48-54
    • /
    • 2006
  • In this thesis, accelerated life test (ALT) method and procedure for rubber O-ring are applied to assure specified reliability of the products at guaranteeing the life of the products. Rubber O-ring is parts that keep intensity or make machine operation smoothly on attrition portion of machine and is used to prevent that oil is leaked. Usually. Rubber O-ring used NBR that is copolymer of acrylonitrile and butadiene. this are superior oil resistance, heat resistance, durability of abrasion, cold resistance, chemical resistance etc. The accelerated life test model for rubber O-ring are developed using the relationship between stresses and life characteristics of products. Using the accelerated life test method and the acceleration life test equipment which is developed, we performed life test, collected life data and analyzed the results of tests. The proposed accelerated life test method and procedure may be extended and applied to testing similar kinds of products to reduce test times and costs of the tests remarkably.

  • PDF

Rubber Material Development and Performance Evaluation of Diaphragm Seal for Steam Generator Nozzle Dam

  • Woo, Chang-Su;Song, Chi-Sung;Lee, Han-Chil;Kwon, Jin-Wook
    • Elastomers and Composites
    • /
    • v.55 no.3
    • /
    • pp.222-228
    • /
    • 2020
  • Rubber materials, used in nuclear power plants, need high heat-oxidation resistance to curing or cracking under a heat aging environment. This is because they are applied to environments with high temperature, high humidity, and radiation exposure. Nuclear radiation causes additional hardening or degradation, therefore, rubber materials need radiation resistance that satisfies the general and any accidental conditions produced in the power plant. Therefore, in this study, we developed a rubber material with excellent heat and radiation resistance for the diaphragm seal of a nuclear steam generator nozzle dam. The rubber material greatly improved the reliability of the steam generator nozzle dam. In addition, 30 inch and 42 inch diaphragm seals were manufactured using the developed rubber material. A nozzle dam was installed in a nuclear power plant and tested under the same conditions as a steam generator to evaluate safety and reliability. In the future, the performance and safety of diaphragm seals developed through field tests of nuclear power plants will be evaluated and applied to currently operating and new nuclear power plants.

Thermal Design of IGBT Module with Respect to Stability (IGBT소자의 열적 안정성을 고려한 방열설계)

  • Lee Joon-Yeob;Song Seok-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.205-208
    • /
    • 2002
  • Thermal design is required with considering thermal stability to verify the reliability of electric power device with using IGBT. Numerical analysis is performed to analyzed the change in thermal resistance with respect to the various thermal density of heating element. Correlations between thermal resistance and heat generation density are established. With using these correlations, performance curve is composed with respect to the change in thermal resistance of cooling conditions for natural convection and forced convection. Thermal fatigue is occurred at the Inside and outside of IGBT by repeated heat load. The crack is occurred between base plate and ceramic substrate for the inside. When the crack length is 4mm, the failure is occurred. Therefore, Thermal design method considering thermal density, thermal fatigue resistance is presented on this study and it is expected to thermal design with considering life prediction.

  • PDF

A Study on the Insulation Properties for Stator Form-wound Winding by Thermal Degradation Test (가속 열열화 시험에 의한 고정자 형권 코일의 절연특성에 관한 연구)

  • 채승훈;김상걸;오현석;신철기;왕종배;김기준;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.115-118
    • /
    • 2000
  • In case of developing new motor, many examinations was tested to decide a motor efficiency and reliability. To give reliability judgment, traction motor winding insulation was tested by electrical method after appling electrical, heat, mechanical, environmental stress. In this study, stator form-wound winding of traction motor in urban transit E.M.U was tested by accelerative thermal degradation test. Stator form-wound winding was tested on the accelerative degradation composed of heat, vibration, moisture, overvoltage and researched insulation resistance, dielectric loss, partial discharge for insulation degradation properties, evaluated withstand voltage. Degradation temperature was $230[^\circ{C}]$, $250[^\circ{C}]$, $270[^\circ{C}]$, for stator form-wound winding respectively. On the test results of accelerative thermal degradation, insulation properties were relied all temperature until 10 times and expected life was evaluated by the rule of reducing $10[^\circ{C}]$ life into halves. Expected life was 31.8 years. It is guaranteed insulation reliability because of exceeding 25 years life times as considering.

  • PDF

Mechanical Characteristic Evaluation of Proper Material for Ultra-fine Dies (초소형 금형소재의 기계적 특성평가)

  • KANG Jae-hoon;LEE Hyun-yong;LEE Nak-kyu
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.473-476
    • /
    • 2005
  • Today's manufacturing industry is facing challenges from advanced difficult-to-machine materials (WC-Co alloys, ceramics, and composites), stringent design requirements (high precision, complex shapes, and high surface quality), and machining costs. Advanced materials play an increasingly important role in modem manufacturing industries, especially, in aircraft, automobile, tool, die and mold making industries. The greatly-improved thermal, chemical, and mechanical properties of the material (such as improved strength, heat resistance, wear resistance, and corrosion resistance), while having yielded enormous economic benefits to manufacturing industries through improved product performance and product design, are making traditional machining processes unable to machine them or unable to machine them economically. In this paper, mechanical characteristic evaluation test of fine powder type WC-Co alloy was accomplished to obtain clear data for miniaturized special die parts machining with high reliability and high quality.

  • PDF

Optical and Thermal Influence Analysis of High-power LED by MCPCB temperature (MCPCB의 온도에 따른 고출력 LED의 광학적, 열적 영향력 분석)

  • Lee, Seung-Min;Yang, Jong-Kyung;Jo, Ju-Ung;Lee, Jong-Chan;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2276-2280
    • /
    • 2008
  • In this paper, we present thermal dependancy of LED package element by changing temperature of MCPCB for design high efficiency LED lamp, and confirmed influence of LED chip against temperature with analysis of thermal resistance and thermal capacitance. As increasing temperature, WPOs were decreased from 25 to 22.5 [%] and optical power were also decreased. that is decreased reason of optical power that forward voltage was declined by decrease of energy bandgap. Therefore optical power by temperature of MCPCB should consider to design lamp for street light and security light. Moreover, compensation from declined optical efficiency is demanded when LED package is composed. Also, thermal resistances from chip to metal PCB were decreased from 12.18 to 10.8[$^{\circ}C/W$] by changing temperature. Among the thermal resistances, the thermal resistance form chip to die attachment was decreased from 2.87 to 2.5[$^{\circ}C/W$] and was decreased 0.72[$^{\circ}C/W$] in Heat Slug by chaning temperature. Therefore, because of thermal resistance gap in chip and heat slug, reliability and endurance of high power LED affect by increasing non-radiative recombination in chip from heat.