• Title/Summary/Keyword: Heat rate

Search Result 5,909, Processing Time 0.038 seconds

Control of Impinging Jet Heat Transfer with Mesh Screens (Mesh 스크린을 이용한 충돌제트 열전달 제어에 관한 연구)

  • Cho, Joung-Won;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.267-271
    • /
    • 2000
  • The local heat transfer rate of an axisymmetric submerged air jet impinging on normal to a heated flat plate was investigated experimentally with varying solidity of mesh screen. The mean velocity and turbulent Intensity profiles of streamwise velocity component were measured using a hot-wire anemometry. The temperature distribution on the heated flat surface was measured with thermocouples. The screen installed in front of the nozzle exit(behind of 35mm) modify the jet flow structure and local heat transfer characteristics. For higher solidity screen, turbulence intensity at core lesion is high and increases the local heat transfer rate at nozzle-to-plate spacings(L/D<6). For larger nozzle-to-plate spacings(L/D>6), however, the turbulent Intensities of all screens tested in this study approach to an asymptotic curve, but the small mean velocity at the core region reduces the local heat transfer rate for high solidity screens.

  • PDF

Assessment of the performances of a heat exchanger in a light helicopter

  • Carozza, Antonio
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.4
    • /
    • pp.469-482
    • /
    • 2015
  • This study has the aim to develop a numerical design regarding the position and the inner performances of a heat exchanger in a light helicopter. the problem was to find first of all the best position of the heat exchanger inside the engine vane in order to maximize the air flow rate capable to pass through the heat exchanger section. It is to be said that the only air contribution in the vane comes from the opening present in the roof under the main rotor. The design has been performed by means of the commercial code Fluent and using the well known grid generator ICEM CFD. Different positions are first investigated so to establish the best one. Subsequently, different areas of the opening on the roof have been considered in order to maximize even more the flow rate in the heat exchanger that was not sufficient based on the first guess of velocity, as aforementioned. At the end interesting design results are presented and discussed by contours of fields and values.

Characteristic Analysis of the Cooling System Using Ice Slurry Type Heat Storage System (아이스슬러리형 빙축열 시스템을 이용한 냉각 시스템의 특성 분석)

  • Lee, Dong-Won;Lee, Soon-Myung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.111-115
    • /
    • 2006
  • To clarify the hydraulic and thermal characteristics of ice slurry which made from 6.5% ethylene glycol-water solution flow in the double tube and plate type heat exchanger, experimental studies were performed. The mass flux and Ice fraction of ice slurry were varied from 800 to $3,500 kg/m^2s$(or 7 to 17 kg/min) and from 0 to 25%, respectively. During the experiment, it was found that the measured pressure drop and heat transfer rate increase with the mass flux and ice fraction; however the effect of ice fraction appears not to be significant at high mass flux region. At the region of low mass flux, a sharp increase in the pressure drop and heat transfer rate were observed depends on mass flux.

  • PDF

An Experimental Study on Evaporation/Condensation Heat Transfer with Flow Direction in Brazed Plate Heat Exchanger using Refrigerant 410A (R410A를 이용한 브레이징 타입 판형열교환기에서 물 측 유동방향에 따른 응축/증발 성능 평가)

  • Lee, Sung-Woo;Jeong, Young-Man;Lee, Jae-Keun;Lee, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1096-1101
    • /
    • 2009
  • The plate heat exchanger(PHE) in heat pump has two flow streams of the refrigerant and water. The flow direction of the refrigerant, unlike that of water, can be changed by a 4-way valve depending on operating condition. Therefore the flow arrangement is a parallel flow for heating and a counter flow for cooling, respectively. In this study, the effects of the flow direction of the water on the heat transfer rate are investigated experimentally. The experiments are carried out for brazed plate heat exchangers under a parallel and counter flow conditions in evaporation and condensation. The experimental parameters in this study include the mass flux of the refrigerant 410A from 3 to $14\;kg/m^2s$ and the flow patterns for the pressure of PHE fixed at 0.97 and 2.46 MPa. The results show that both the heat transfer rate and frictional pressure drop across the PHE increase with the mass flux. The heat transfer rate of the refrigerant 410A for evaporation show great sensitivity to flow direction of the water. The heat transfer rate for evaporation with a counter flow are 5-30% higher than that with a parallel flow.

  • PDF

An Experimental Study on the Performance of the Louver Fin Type Heat Exchanger by the Change of the Driving Condition (운전조건 변화에 따른 루버휜 열교환기 성능변화에 관한 실험적 연구)

  • Kim, Jung-Kuk;Koyama, Shigeru;Kuwahara, Ken;Kim, Dong-Hwi;Park, Byung-Duck
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.440-445
    • /
    • 2008
  • The present study was investigated the effect of the driving condition on the performance of a louver fin and tube type heat exchanger under frosting condition. Heat transfer rate and pressure drop by frost were experimentally investigated. Effects of the wet blub temperature and the shape of a fin on heat transfer performances has been also investigated. The key parameters were fin type(louver and corrugate fin) and the wet blub temperature of air (0.5, 1.0, $1.5^{\circ}C$). The heat transfer performance of the louver fin and tube type heat exchanger was higher by 0.89% than the corrugate fin type. As the wet blub temperature of air were increased, the heat transfer rate, pressure drop and mass of frost of three test models(Type A, B, C) were increased. Especially, the maximum heat transfer rate and maximum pressure drop were shown for the louver fin and tube type heat exchanger. As a experimental result, the enhancement factor(EF) of louver fin and tube type heat exchanger was $0.2{\sim}0.4$ due to the high pressure drop.

  • PDF

Effect of Welding Heat Input and PWHT Cooling Rate on Mechanical Properties of Welded Region at SAW of 1.25Cr-0.5Mo Steel for Pressure Vessel (압력용기용 1.25Cr-0.5Mo 강의 Submerged Arc Welding시 입열 및 PWHT 냉각속도가 용접부 기계적 성질에 미치는 영향)

  • Lee Dong-Hwan;Park Jong-Jin
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.26-31
    • /
    • 2004
  • In order to propose the optimum welding condition for field application, the effects of welding heat input and cooling rate at PWHT on the mechanical properties were investigated. Submerged arc welding of 1.25Cr-0.5Mo steel for pressure vessel was conducted at welding heat inputs of 15.2kJ/cm, 30.9kJ/cm, and 44.8kJ/cm, and cooling rates of 184$^{\circ}C$/hr, 55$^{\circ}C$/hr, and 2$0^{\circ}C$/hr at PWHT. From the test results, as the welding heat input increase up to 30.9kJ/cm, the changes of microstructure and impact toughness were small. At the heat input of 44.8kJ/cm, however, toughness decreased obviously due to the coarsening of coarse-grained HAZ and formation of ferrite at bainite grainboundary of weld metal. On the other hand, cooling rates at PWHT did not effect on the changes in microstructure and mechanical properties. Even though tensile strength and impact toughness at all welding conditions of this study were above the minimum specification requirement, it was confirmed that heat input of 30.9kJ/cm was the optimum welding condition to improve welding performance by higher heat input.

Performance Analysis of a Low-Depth Unit-Type Ground Heat Exchanger using Numerical Simulation (수치해석을 통한 저심도 유닛형 지중열교환기의 성능 검토)

  • Oh, JinHwan;Seo, JangHoo;Na, Yujin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.169-173
    • /
    • 2015
  • Recently, ground source heat pump (GSHP) systems have attracted much attention, according to the enhanced social demand of renewable energy. GSHP systems can achieve higher coefficient of performance than the conventional air-source heat pump systems by utilizing stable underground temperature. However, the initial cost of GSHP system is higher than that of the conventional systems, especially, in the small-size buildings. Therefore, it is necessary to develop small-size ground heat exchanger with low cost and quick installation. In this study, a unit-type ground heat exchanger was developed and heat exchange rate was calculated by the numerical simulation. As a result, 27.45 W/m of heat exchange rate was acquired in the condition of $0.5m{\times}0.2m{\times}2m$ unit.

Study on Cold-Heat Pattern Identification in Hypertensive Patients with Antihypertensive Agents (항고혈압제제를 복용 중인 성인 고혈압 환자의 한열 특성에 관한 연구)

  • Yang, Na-Rae;Han, Chang-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.3
    • /
    • pp.267-277
    • /
    • 2013
  • Objectives : The aim of this study was to investigate the correlation between Cold-Heat pattern tendency and demographic traits, physical character, and vital signs in hypertensive patients taking anti-hypertensive agents. Methods : 28 hypertensive patients 30 to 69 years old were recruited. We assessed their general characteristics, physical characteristics (height, weight, waist circumference, etc.), vital signs without respiratory rate (blood pressure, pulse rate, temperature) and administered a Cold-Heat pattern questionnaire. After that, we analyzed statistical data on separate groups according to Cold-Heat characteristics or other criteria. Results : 1. Heat group patients had statistically higher scores in waist, body mass index (BMI), waist circumference and pulse rate. 2. Over weighted group patients had statistically lower scores in cold Pattern Identification. 3. Higher BMI group (above 23/25) patients had statistically significantly higher Heat scores and lower Cold scores, higher waist circumference group patients had lower Cold scores. Conclusions : From the above result in hypertensive patients taking hypertensive agents, Heat group had a obesity tendency and the inverse is also valid. Later, progressed study based on more samples and varied data will contribute to diagnosis the Cold-heat Pattern identification in hypertensive patients.

Study on the Development of Multi Heat Supply Control Algorithm in Apartment Building of District Heating Energy (지역난방 에너지 공동주택의 다중 열공급 제어 알고리즘 개발에 관한 해석적 연구)

  • Byun, J.K.;Choi, Y.D.;Park, M.H.;Shin, J.K.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.63-70
    • /
    • 2011
  • In the present study, we developed optimal heat supply algorithm which minimizes the heat loss through the distribution pipe line in group energy apartment. Heating load variation of group energy apartment building in accordance with outdoor air temperature was predicted by the correlation obtained from calorimeter measurements of whole households of apartment building. Supply water temperature and mass flow rate were conjugately controlled to minimize the heat loss rate through distribution pipe line. Group heating apartment located in Hwaseong city, Korea, which has 1,473 households divided in 4 regions, was selected as the object apartment for verifying the present heat supply control algorithm. Compared to the original heat supply system, 10.4% heat loss rate reduction can be accomplished by employing the present control algorithm.

Feasibility study of ground source heat pump system according to the local climate condition (지역 기후 특성에 따른 지열시스템의 도입경제성 차이에 관한 연구)

  • Nam, Yujin
    • KIEAE Journal
    • /
    • v.14 no.4
    • /
    • pp.127-131
    • /
    • 2014
  • The ground source heat pump (GSHP) system is a kind of the temperature differential energy system using relatively stable underground temperature as heat source of space heating and cooling. This system can achieve higher performance of system than it of conventional air source heat pump systems. However, its superiority of the system performance is different according to installation location or local climate, because the system performance depends on the underground condition which is decided by annual average air temperature. In this study, in order to estimate the feasibility of the ground source heat pump system according to the local climate, numerical simulation was conducted using the ground heat transfer model and the surface heat balance model. The case study was conducted in the condition of Seoul, Daejeon, and Busan, In the result, the heat exchange rate of Busan was 34.33 W/m as the largest in heating season and it of Seoul was 40.61 W/m as the largest in cooling.