• Title/Summary/Keyword: Heat pump system

Search Result 1,122, Processing Time 0.027 seconds

Experimental study on the discharge coefficients and cavitation of conical orifices (원추형 오리피스의 유출계수와 캐비테이션에 관한 실험적 연구)

  • Kim, Byeong-Chan;Yun, Byeong-Ok;Park, Bok-Chun;Jo, Nam-O;Ji, Dae-seong;Jeong, Baek-Sun;Park, Gyeong-Am
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1371-1379
    • /
    • 1997
  • The high pressure drop is frequently required in the by-pass line of the pump or of the heat exchanger in power plants. However, cavitation produced by a high pressure drop could damage the pipe and pump blades. Conical orifices are adopted to reduce cavitation due to high pressure drop. The discharge coefficients of conical orifice plates were measured by weighing method in the standard water flow system. The discharge coefficients were larger when the ratios of thickness of orifice edge to throat diameter were larger. The noise generated from a conical orifice due to cavitation was measured with a sound level meter and a hydrophone. With increasing the bore diameter of the orifice, the sound pressure level or the noise level due to cavitation became higher. The noise level was suddenly increased at the inception of cavitation.

Data Analysis Platform Construct of Fault Prediction and Diagnosis of RCP(Reactor Coolant Pump) (원자로 냉각재 펌프 고장예측진단을 위한 데이터 분석 플랫폼 구축)

  • Kim, Ju Sik;Jo, Sung Han;Jeoung, Rae Hyuck;Cho, Eun Ju;Na, Young Kyun;You, Ki Hyun
    • Journal of Information Technology Services
    • /
    • v.20 no.3
    • /
    • pp.1-12
    • /
    • 2021
  • Reactor Coolant Pump (RCP) is core part of nuclear power plant to provide the forced circulation of reactor coolant for the removal of core heat. Properly monitoring vibration of RCP is a key activity of a successful predictive maintenance and can lead to a decrease in failure, optimization of machine performance, and a reduction of repair and maintenance costs. Here, we developed real-time RCP Vibration Analysis System (VAS) that web based platform using NoSQL DB (Mongo DB) to handle vibration data of RCP. In this paper, we explain how to implement digital signal process of vibration data from time domain to frequency domain using Fast Fourier transform and how to design NoSQL DB structure, how to implement web service using Java spring framework, JavaScript, High-Chart. We have implement various plot according to standard of the American Society of Mechanical Engineers (ASME) and it can show on web browser based on HTML 5. This data analysis platform shows a upgraded method to real-time analyze vibration data and easily uses without specialist. Furthermore to get better precision we have plan apply to additional machine learning technology.

Design and Construction of a Bottoming Organic Rankine Cycle System for an Natural Gas Engine (가스엔진용 유기랭킨사이클의 설계 및 제작)

  • Lee, Minseog;Baek, Seungdong;Sung, Taehong;Kim, Hyun Dong;Chae, Jung Min;Cho, Young Ah;Kim, Hyoungtae;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.65-72
    • /
    • 2016
  • ORC system was designed and constructed for utilizing the heat of the exhaust gas and coolant released from the gas engine which was modified to use natural gas as a fuel. In this paper the components of the ORC system were designed and manufactured based on measured data of the gas engine. The components are composed of two plate heat exchanger, the 5kW-class expander and multi stage centrifugal pump. The thermodynamic performance of the ORC system was analyzed by using the electric heater. Also, the developed ORC system was implemented to modified natural gas engine. Two gas engines were used to supply heat to the ORC system. As a result of test bench, when the heat source temperature is $110^{\circ}C$ expander shaft power, the pressure ratio and cycle efficiency is 5.22kW, 7.41, 9.09%. As a result of field test, when the heat source temperature is $86^{\circ}C$ expander shaft power, the pressure ratio and cycle efficiency is 2kW, 3.75, 6.45%.

Economic Investigation of Small Scale Cogeneration System in a School Dormitory of Busan Region (부산지역 학교 기숙사에서의 소형열병합발전 시스템의 경제성 분석)

  • Song, Jae-Do;Ku, Bon-Cheol;Kang, Yul-Ho;Park, Jong-Kyu;Lee, Jae-Keun;Ahn, Young-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.9
    • /
    • pp.657-662
    • /
    • 2012
  • The cogeneration system can operate at efficiencies greater than those achieved when heat and power are produced in separate. The optimal system can be determined by selecting the auxiliary system combined with cogeneration system. In the present study, economic investigation has been conducted with the cogeneration electric heat pump(EHP) system and the cogeneration absorption chiller(AC) system to install in a school dormitory. To analyze life cycle cost(LCC), cost items such as initial investment costs, annual energy costs and maintenance costs of each system have been considered. The initial investment cost is referred to the basis of estimated costs, and annual energy costs such as the electric power and gas consumption are based on the data in a school dormitory. LCC is evaluated with the present worth method. Considering investigated results, the initial investment cost of the cogeneration EHP system is more profitable about 24% than that of the cogeneration AC system. The energy cost of the cogeneration EHP system is more profitable about 8% than the cogeneration AC system. The LCC shows that the cogeneration EHP system is the most effective system in the school dormitory.

Performance of R1234yf and R1234yf/R134a Mixture under Mobile Air-conditioner Operating Conditions (R1234yf와 R1234yf/R134a의 자동차 에어컨 작동 조건에서의 성능 평가)

  • Park, Ki-Jung;Lee, Yo-Han;Choe, Dae-Seong;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.837-844
    • /
    • 2010
  • In this study, performance of R1234yf and R1234yf/R134a mixture is measured on a heat pump bench tester in an attempt to substitute R134a used widely in mobile air conditioners (MACs). The bench tester is equipped with a open type compressor providing a nominal capacity of 3.5 kW. All tests are conducted under the summer cooling and winter heating conditions of 7/4 $5^{\circ}C$ and $-7/41^{\circ}C$ in the evaporator and condenser, respectively. For R1234yf/R134a mixture, measurements are made at 5%, 10%, and 15% of R134a by mass. Test results show that the coefficient of performance (COP) and capacity of R1234yf are up to 2.7% and 4.0% lower than those of R134a, respectively. For R1234yf/R134a mixture, the COP and capacity are up to 3.9% lower and 3.6% higher than those of R134a. For R1234yf and R1234yf/R134a mixture, the compressor discharge temperature is $4.1{\sim}6.7^{\circ}C$ lower than that of R134a while the amount of charge is reduced up to 11% as compared to R134a. 90%R1234yf/10%R134a is a better refrigerant than pure R1234yf in that it is less flammable and more compatible with existing R134a system. Based upon the results, it is concluded that R1234yf and R1234yf/R134a mixture are long term environmentally friendly solutions to mobile air-conditioners due to their excellent environmental properties with acceptable performance.

Analytic study on thermal management operating conditions of balance of 100kW fuel cell power plant for a fuel cell electric vehicle (100kW급 연료전지 열관리 시스템 실도로 운전조건 해석적 연구)

  • Lee, Ho-Seong;Lee, Moo-Yeon;Cho, Choong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.1-6
    • /
    • 2019
  • The objective of this study was to investigate performance characteristics of thermal management system(TMS) in a fuel cell electric vehicle with 100kW Fuel Cell(FC) system. In order to build up analytic modelling for TMS, each component was installed and tested under various operating conditions, such as water pump, radiator, 3-Way valve, COD heater, and FC stack etc. and as the results of them, correlations reflecting component's characteristics with flow rate, air velocity were developed. Developed analytic modelling was carried out under various operating conditions on the road. To verify modelling's accuracy, after prediction for optimum coolant flow rate was fulfilled under certain operating conditions, such as FC system, water pump speed, opening of 3-way valve, and pipe resistance, analytic and experimental values were compared and good agreement was shown. In order to predict cold-start operating performance for analytic modelling, coolant temperature variation was analyzed with $-20^{\circ}C$ ambient temperature and duration was predicted to rise in optimum temperature for FC. Because there is appropriate temperature difference between inlet and outlet of FC stack to operate FC system properly, related analysis was performed with respect to power consumption for TMS and heat rejection rate and performance map was depicted along with FC operating conditions.

A Study on Abnormal Noise Reduction of Scroll Compressor (Scroll Compressor의 이상 소음 저감에 관한 연구)

  • Ahn, B.H.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.28-35
    • /
    • 1999
  • An application of scroll compressor to the residential air conditioning and heat pump markets has generated many reliability problem, especially abnormal noise. Most of these noise problems is due to the check valve and compliance between FS(Fixed Scroll) and OS(Orbiting Scroll). FS and OS are the main parts of scroll compressor and are the main pumping part. But check valve has the role of protection of reverse rotation of OS when power is off. Check valve have several noise problems. Among them, shut down noise and valve movement noise is more than severe than any other problem. In this paper covers with these two noise problem.

  • PDF

RELAP5/MOD3 Assessment Against a ROSA-IV/LSTF Loss-of-RHRS Experiment

  • Park, Chul-Jin;Han, Kee-Soo;Lee, Cheol-Sin;Kim, Hee-Cheol;Lee, Sang-Keun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.745-750
    • /
    • 1996
  • An analysis of a loss of residual heat removal system (RHRS) event during midloop operation after reactor shutdown was performed using the RELAP5/MOD3 thermal-hydraulic computer code. The experimental data of a 5% cold leg break test conducted at the ROSA-IV Large Scale Test Facility (LSTF) to simulate a main coolant pump shaft seal removal event during midloop operation of a Westinghouse-type PWR were used in the analysis. The predicted core boiling time and the peak primary system pressure showed good agreements with the measured data. Some differences between the calculational results and the experimental results were, however, found in areas of the timing of loop seal clearing and the temperature distribution in a pressurizer. Other calculational problems identified were discussed as well.

  • PDF

Optimal Velocity Profile for Minimum Power Consumption of Korean Total Artificial Heat

  • Chang, Jun-Keun;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.51-64
    • /
    • 1997
  • A dynamic model of the Korean total artificial heart(TAH) which contains a brushless DC motor, all of mechanical components, the pump system with integrated variable volume space(WS) and the circulatory system model including the bronchial circulation were established Two different sets of seven differential equations were separately derived for the left and right systolic period of the Korean TAH operation. Throughout the computer simulation, a full-state fEedback optimal controller that minimizes the power consumption of the Korean TAH and drives the end stage velocity of the energy converter to zero was developed based upon the optimal control theory. Robustness of the controller were also analyzed with the dynamic model of the Korean TAH.

  • PDF

Brief description of the Design and Construction of the Burj Dubai Project, Dubai, UAE.

  • Abdelrazaq Ahmad K.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.9-14
    • /
    • 2005
  • The Burj Dubai Project will be the tallest structure ever built by man; when completed the tower will be more than 700 meter tall and more than 160 floors. The early integration of aerodynamic shaping and wind engineering considerations played a major role in the architectural massing and design of this residential tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria. This paper presents a brief overview of the structural system development and considerations of the tower and discusses the construction planning of the key structural components of the tower.

  • PDF