• Title/Summary/Keyword: Heat pump system

Search Result 1,120, Processing Time 0.027 seconds

A Study of Manufacturing AZ91D Mg Alley Wheel (마그네슘 합금제 휠 제조에 관한 연구)

  • Kim, Jung-Gu;Shin, Il-Seong;Kum, Dong-Hwa
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.715-723
    • /
    • 1999
  • Magnesium has been used as wheel materials in the automotive industry for more than 20 years. The magnesium wheels, which are lighter by 25% than aluminum wheels, provide easy controllability providing excellent road holding by the reduction of weight. The purpose of this work is to develop cast AZ91D alloy wheel by sand cast and permanent mold cast. The fluxless melting with the protective gas $(SF_6+CO_2)$ was Performed to eliminate oxidation of melt and impurity. The transfer of molten magnesium to the mold was done by using gas-pressurized Pump system through the heated pipe. The mechanical properites of AZ91D alloy wheel were investigated as a function of heat treatment, ingot composition.

  • PDF

A Study on Steady-State Criterion based on COV and a Fault Detection Method during GHP Operation (GHP 운전시 COV에 의한 정상상태 판별 및 이상검출 방법 연구)

  • Shin, Young-Gy;Oh, Se-Jae;Jeong, Jin-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.705-710
    • /
    • 2011
  • Fault detection has to be proceeded by steady state filtering to get rid of transient effect associated with thermal capacity. Coefficient of variance (COV), ratio of standard deviation devided by moving average, was employed as steady-state filter. Engine speed and refrigerant pressures were selected as parameters representing system dynamics. The filtered values were registered as members of steady-state DB. They were found to show good functional relationship with ambient temperature. The relationship was fitted with a second order polynomial and the distribution bounds of the data around the fitted curve were expressed by visual inspection because of varying average and random data interval. Fault data were compared with the steady-state data obtained during normal operation. The fault data were easily isolated from the fault-free one. To make such isolation reliable, tests to construct good DB should be designed in a systematic way.

Comparison Study of Air-conditioning Systems using LCC Analysis (LCC를 이용한 공조 방식별 비교 연구)

  • Kim, Joung-Kuk;Chung, Kwang-Seop;Kim, Young-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.3
    • /
    • pp.12-18
    • /
    • 2012
  • The purpose of this study is to make an economic analysis(Life cycle cost) of selecting optimal air conditioning system for a research building which is 8 stories with a total floor area of $32,010m^2$. Energy consumptions of three proposed air-conditioning systems(Alt-1,2,3) that reflect the government green-growth policy are calculated and compared. The results show that life cycle cost of Alt-3(Ventilation DX AHU+EHP) is less than Alt-1(EHP+ventilation DX AHU) by 5.1%, and Alt-2(Absorption chiller/heater+EHP) by 34.3%. Annual energy consumption of Alt-3 is less than Alt-1 by 9.9%, and Alt-2 by 37.4%. Annual $CO_2$ emission of Alt-3 is less than Alt-1 by 9.9%, and Alt-2 by 0.2%.

An Analytical Study on the Optimal Set-point of the Hybrid Plant (복합열원설비 운전온도 최적 설정에 관한 해석적 연구)

  • Jeon, Jong-Ug;Lee, Sun-Il;Lee, Tae-Won;Kim, Yong-Ki;Hong, Dae-Hie;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.352-357
    • /
    • 2007
  • The objective of this study is to find the optimal set-point of a hybrid Plant, which is combined by renewable energy plant of the GSHP(Ground Source Heat Pump) and the conventional plant(chiller, boiler). The work presented in this study was carried out by using the EnergyPlus(Version 2.0). In order to validate the simulation model, field data were measured from a building. The GSHP was used as a base plant and the conventional plant as the assistant plant. Various temperatures were controlled (zone summer set-point, zone winter set-point, chilled water temperature, hot water temperature) to find the optimal set-point temperature of the system. The influence of the various set-points were analyzed seasonally.

  • PDF

Abnormal High-Temperature Behavior Troubleshooting of Process Compressor Tilting Pad Journal Bearing (프로세스 압축기 틸팅패드 저널베어링의 비정상 고온거동 트러블슈팅)

  • Lee, An Sung;Lee, Woonsil;Choi, Dong-Hoon
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.37-44
    • /
    • 2017
  • A DE-side LBP tilting pad journal bearing of a 1-stage overhung heat-pump compressor in a propylene process exhibited abnormal high-temperature behavior. Its temperature had been relatively high at $78^{\circ}C$ from the beginning of operation. In 2014, after three years of operation, it increased suddenly and reached $103^{\circ}C$. Installing a varnish removal equipment and others managed to stabilize the temperature at $95^{\circ}C$. We undertook a troubleshooting approach for reviewing the comprehensive status and integrity of the temperature design of the bearing. We performed lubrication and heat-balance analysis, based on the design engineering data and documents supplied by the OEM. For the base design data of DE-side TPJB, evaluating the effects of key design variables on bearing metal temperature showed that firstly, increasing the bearing clearance and supply oil flow-rate, and next, changing the oil type, and finally, increasing the machined pad clearance and offset, are more effective in reducing the bearing metal temperature. Furthermore, a clarification meeting with the OEM revealed that an incorrect decision had been made to decrease the bearing clearance to eliminate the SSV harshness issue, while not maintaining a sufficient oil flow-rate. We conducted a detailed retrofit design analysis, wherein we increased the oil flow-rate and bearing clearance by decreasing the preload. We predicted that the bearing temperature would decrease to $63^{\circ}C$ from $75.7^{\circ}C$ even at the rerate condition. Finally, after installing and operating a retrofit replacement bearing in 2015, the bearing temperature stabilized at a low temperature of $65^{\circ}C$. Currently (January. 2017), two year later, the bearing metal temperature remains at $65^{\circ}C$. Therefore, we can conclude that the abnormal high-temperature behavior of the bearing has been resolved completely.

FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

  • Gim, Gyun-Ho;Chang, Se-Myoung;Lee, Sinyoung;Jang, Gangwon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.633-640
    • /
    • 2014
  • In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics) technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI). The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency) of pump, and fluid-structure interaction.

On the Safety and Performance Demonstration Tests of Prototype Gen-IV Sodium-Cooled Fast Reactor and Validation and Verification of Computational Codes

  • Kim, Jong-Bum;Jeong, Ji-Young;Lee, Tae-Ho;Kim, Sungkyun;Euh, Dong-Jin;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1083-1095
    • /
    • 2016
  • The design of Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR) has been developed and the validation and verification (V&V) activities to demonstrate the system performance and safety are in progress. In this paper, the current status of test activities is described briefly and significant results are discussed. The large-scale sodium thermal-hydraulic test program, Sodium Test Loop for Safety Simulation and Assessment-1 (STELLA-1), produced satisfactory results, which were used for the computer codes V&V, and the performance test results of the model pump in sodiumshowed good agreement with those in water. The second phase of the STELLA program with the integral effect tests facility, STELLA-2, is in the detailed design stage of the design process. The sodium thermal-hydraulic experiment loop for finned-tube sodium-to-air heat exchanger performance test, the intermediate heat exchanger test facility, and the test facility for the reactor flow distribution are underway. Flow characteristics test in subchannels of a wire-wrapped rod bundle has been carried out for safety analysis in the core and the dynamic characteristic test of upper internal structure has been performed for the seismic analysis model for the PGSFR. The performance tests for control rod assemblies (CRAs) have been conducted for control rod drive mechanism driving parts and drop tests of the CRA under scram condition were performed. Finally, three types of inspection sensors under development for the safe operation of the PGSFR were explained with significant results.

Rectal Temperature Maintenance Using a Heat Exchanger of Cardioplegic System in Cardiopulmonary Bypass Model for Rats (쥐 심폐바이패스 모델에서 심정지액 주입용 열교환기를 이용한 직장체온 유지)

  • Choi Se-Hoon;Kim Hwa-Ryong;Paik In-Hyuck;Moon Hyun-Jong;Kim Won-Gon
    • Journal of Chest Surgery
    • /
    • v.39 no.7 s.264
    • /
    • pp.505-510
    • /
    • 2006
  • Background: Small animal cardiopulmonary bypass (CPB) model would be a valuable tool for investigating path-ophysiological and therapeutic strategies on bypass. The main advantages of a small animal model include the reduced cost and time, and the fact that it does not require a full scale operating environment. However the rat CPB models have a number of technical limitations. Effective maintenance and control of core temperature by a heat exchanger is among them. The purpose of this study is to confirm the effect of rectal temperature maintenance using a heat exchanger of cardioplegia system in cardiopulmonary bypass model for rats. Material and Method: The miniature circuit consisted of a reservoir, heat exchanger, membrane oxygenator, roller pump, and static priming volume was 40 cc, Ten male Sprague-Dawley rats (mean weight 530 gram) were divided into two groups, and heat exchanger (HE) group was subjected to CPB with HE from a cardioplegia system, and control group was subjected to CPB with warm water circulating around the reservoir. Partial CPB was conducted at a flow rate of 40 mg/kg/min for 20 min after venous cannulation (via the internal juglar vein) and arterial cannulation (via the femoral artery). Rectal temperature were measured after anesthetic induction, a ter cannulation, 5, 10, 15, 20 min after CPB. Arterial blood gas with hematocrit was also analysed, 5 and 15 min after CPB. Result: Rectal temperature change differed between the two groups (p<0.01). The temperatures of HE group were well maintained during CPB, whereas control group was under progressive hypothermia, Rectal temperature 20 min after CPB was $36.16{\pm}0.32^{\circ}C$ in the HE group and $34.22{\pm}0.36^{\circ}C$ in the control group. Conclusion: We confirmed the effect of rectal temperature maintenance using a heat exchanger of cardioplegia system in cardiopulmonary bypass model for rats. This model would be a valuable tool for further use in hypothermic CPB experiment in rats.

Performance improvement of BOP Components for 1kW Stationary Fuel Cell Systems to Promote Green-Home Dissemination Project (그린홈 보급확대를 위한 건물용 연료전지 보조기기의 성능 향상)

  • Lee, Sunho;Kim, Dongha;Kim, Minseok;Jun, Heekwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.89.1-89.1
    • /
    • 2011
  • According to green growth's policy, green-home dissemination's projects are promoting. Among them, stationary fuel cell systems are receiving attention due to high efficiency and clear energy. But it need absolutely to develop cost down technologies and improve system durability for commercialization of the fuel cell system. To achieve this objectives, in 2009, the Korean Government and "Korea Institute of Energy Technology Evaluation and Planning(KETEP)" launched into the strategic development project of BOP technology for practical applications and commercializations of stationary fuel cell systems, named "Technology Development on Cost Reduction of BOP Components for 1kW Stationary Fuel Cell Systems to Promote Green-Home Dissemination Project". This paper introduces a summary of improved BOP performances that has been achieved through the 2nd year development precesses(2010.06~2011.05) base on 1st year development precesses(2009.06~2010.05). The major elements for fuel cell systems are cathode air blowers, burner air blowers, preferential oxidation air blowers, fuel blowers, cooling water pumps, reformer water pumps, heat recovery pumps, mass flow meters, electrical valves, safety valves and a low-voltage inverter. Key targets of those elements are the reduction of cost, power consumption and noise. Invert's key targets are development the low -voltage technologies in order to reduce the number of unit cell in fuel cell system's stack.

  • PDF

Spot Cooling System Development for Ever-bearing Strawberry by Using Low Density Polyethylene Pipe (연질 PE관을 이용한 여름딸기 부분냉방기술 개발)

  • Moon, Jong Pil;Kang, Geum Choon;Kwon, Jin Kyung;Lee, Su Jang;Lee, Jong Nam
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.149-158
    • /
    • 2014
  • The effects of spot cooling on growing ever-bearing strawberry in hydroponic cultivation during summer by spot cooling system was estimated in plastic greenhouse located in Pyeongchang. The temperature of cooling water was controlled by heat pump and maintained at the range of $15{\sim}20^{\circ}C$. Cooling pipes were installed in root zone and very close to crown. Spot cooling effect was estimated by applying system in three cases which were cooling root zone, crown plus root zone, and crown only. White low density polyethylene pipe in nominal diameter of 16 mm was installed on crown spot, and Stainless steel flexible pipe in nominal diameter of 15A was installed in root zone. Crown and root zone cooling water circulation was continuously performed at flowrates of 300 ~ 600 L/hr all day long. Strawberry yields by test beds were surveyed from Aug. 1 to Sep. 30. The accumulated yield growth rate compared with a control bed of crown cooling bed was 25 % and that of crown plus root zone cooling bed was 25 % and that of root zone cooling bed was 20 %. The temperatures of root spot in root zone cooling was maintained at $18{\sim}23.0^{\circ}C$ and that of crown spot in crown cooling was maintained at $19{\sim}24^{\circ}C$. Also, the temperatures of root spot in crown plus root zone cooling bed was maintained at $17.0{\sim}22.0^{\circ}C$ and that of crown spot was maintained at $19{\sim}25^{\circ}C$.