• Title/Summary/Keyword: Heat medium

Search Result 817, Processing Time 0.026 seconds

Thermal Design of PCR Chip for LOC (랩온어칩을 위한 중합효소 연쇄반응 칩의 열설계)

  • Kim, Deok-Jong;Kim, Jae-Yun;Park, Sang-Jin;Heo, Pil-U;Yun, Ui-Su
    • 연구논문집
    • /
    • s.33
    • /
    • pp.17-25
    • /
    • 2003
  • In this work, thermal design of a PCR chip for LOC is systematically conducted. From the numerical simulation of a PCR chip based on the finite volume method, how to control the average temperature of a PCR chip and the temperature difference between the denaturation zone and the annealing zone is presented. The average temperature is shown to be controlled by adjusting heat input and a cooler as well as a heater is shown to be necessary to obtain three individual temperature zones for polymerase chain reaction. To reduce the time required, a heat sink for the cooler is not included in the calculation domain for the PCR chip and heat sink design is conducted separately by using a compact modeling method, the porous medium approach.

  • PDF

HEAT TRANSFER ON THE COMBUSTION CHAMBER OF A WATER TUBE TYPE BOILER WITH MULTIPLE BURNERS (다중 버너를 채택한 수관식 산업용 보일러 연소실의 열전달 특성)

  • Ahn, J.;Hwang, S.;Kim, J.J.;Kang, S.B.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.77-83
    • /
    • 2009
  • Operating medium or large scale industrial boilers in partial load condition, the burner should undergo the off-design points resulting in poor exhaust gas characteristics. To obtain the stable turn down performance, two or more burners can be used for the industrial boiler. In case multiple burners are adopted, the heat transfer can be enhanced by arranging the burners properly. In the present study, numerical simulations have been conducted for the combustion chamber of a 2 t/h class industrial boiler in order to clarify the heat transfer characteristics at the combustion chamber.

Analytical Solution of Two -dimensional Conduction in the Side Wall of a Thermocline System Enclosure (Thermocline 축열조 측벽에서의 열전도 해석)

  • Lee Joon Sik
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.1
    • /
    • pp.103-108
    • /
    • 1987
  • The heat transfer processes taking place in the side wall of a thermocline enclosure have been analyzed for idealized conditions based on the assumption that, at any instant time, side wall heat transfer processses are independent of the thermocline bulk motion. However, the axial tempera-ture distribution in the thermocline core provides the means for specifying the liquid medium-side boundary condition to the enclosure side wall. A picture is drawn which reflects the side wan response to thermocline bulk motion within the frame work of a quasi-steady analytic approach. For valves of the parameters typical of systems of engineering interest, the analysis shows that a significant amount of heat transfer short - circuiting can take place along the side wall enclosure. This phenomenon is favored by high values of $H_l$ and low values of P and $H_g$ respec-tively. The location of the point of zero normal heat flux on the side wan can be expected to mark, approximately, the region of confluence of two sidewall boundary flows respectively driven by the buoyant effects.

  • PDF

A Study on the Wear Characteristics of Compound Layers Formed during Gaseous Nitrocarburizing in Medium Carbon Boron Steels (중탄소 Boron강의 가스침질탄화처리에 의해 형성된 화합물층의 마모특성에 관한 연구)

  • Park, K.W.;Oh, D.W.;Cho, H.S.;Lee, H.W.;Lee, J.B.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.2
    • /
    • pp.136-144
    • /
    • 1999
  • The study on the wear characteristics of compound layers formed during gaseous nitrocarburising in the medium carbon boron steels and the plain carbon steel has been carried out by using a pin-on-disc type wear test machine under the oil lubricating condition at room temperature and by varying applied loads, sliding speeds and wear distances. Values of friction coefficient measured at the sliding speed of 0.4m/sec under the oil lubricating condition have been shown to decrease considerably with increasing applied load and become gradually a constant value as load is increased to a higher value, showing that the transition load for friction coefficient appears at an applied load of 247.2N. The length and volume wear rates of compound layer have been revealed to relatively constantly increase, also showing that the wear life per unit thickness of compound layer turns out to be superior as porous layer has a denser and thinner appearance. As the sliding speed increases during wear test performed by varying sliding speed at a load of 63.2N under the oil lubricating condition for medium carbon boron steel nitrocarburised in gas atmosphere, the wear rate has been found to increase, the friction coefficient to decrease and the wear life per unit thickness of compound layer to decrease considerably.

  • PDF

Development of Antifreeze Concentration Control device for Solar Heat Energy System (태양열에너지 시스템용 부동액 농도 제어 장치의 개발)

  • Seo, Choong-Kil;Won, Joung Wun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • The gases emitted from internal combustion engines using fossil fuels are causing many social problems, such as environmental pollution, global warming, and adverse health effects on the human body. In recent years, the demand for renewable energy has increased, and government policy support and research and development are also active. In the collecting part of a solar energy system, which is widely used at home, propylene glycol (PG) (anti-freeze), as a heating medium, is mixed with water at a fixed value of 50%, and the heat is transferred to the collecting part at subzero temperatures. On the other hand, when leakage occurs in the heat medium in the heat collecting part, supplemental water is supplied to the solar heat collecting part due to the characteristics of the solar heat system, so that the concentration of antifreeze in the replenishing water becomes low. As a result, the temperature of the solar heat collecting part is lowered resulting in a frost wave, which causes economic damage. The purpose of this study was to develop a device capable of controlling the antifreeze concentration automatically in response to a temperature drop to prevent freezing of the heat collecting part generated in the solar energy system. The electrical conductivity of the H2O component was larger than that of PG, and the resistance increased with decreasing temperature. The PG concentration control values of 40, 50, and 60% should be controlled through calibration with a PG concentration of 39.6, 50.7, and 60.1%.

Effect of production level and source of fat supplement on performance, nutrient digestibility and blood parameters of heat-stressed Holstein cows

  • Akhlaghi, Behzad;Ghorbani, Gholam Reza;Alikhani, Masoud;Kargar, Shahryar;Sadeghi-Sefidmazgi, Ali;Rafiee-Yarandi, Hassan;Rezamand, Pedram
    • Journal of Animal Science and Technology
    • /
    • v.61 no.6
    • /
    • pp.313-323
    • /
    • 2019
  • The interactive effect of dietary fat supplementation and milk yield level on dairy cows performance under heat stress has not been thoroughly investigated. The purpose of this study was to evaluate the effect of production level, the source of fat supplements and their interaction on dairy cows performance under heat stress. In this study, 64 Holstein multiparous cows were divided into 2 groups and received one of two rations having either calcium salts of fatty acids (Ca-FA) or high-palmitic acid (PA) supplements (2.8% of DM; dry matter). After completing the experiment and based on maturity-equivalent milk, cows were divided into two groups of high-yielding (14,633 kg) and medium-yielding (11,616 kg). Average temperature humidity index (THI) was 71 during the trial period. Apparent digestibility of dry matter (p = 0.04), organic matter (p = 0.05), and neutral detergent fiber (NDF; p = 0.04) for cows fed Ca-FA were greater than cows fed PA. The milk fat content in high-producing cows was 0.3% greater than medium-producing cows (p = 0.03). The milk protein content in cows fed Ca-FA was greater than cows fed PA (p < 0.01). High-producing cows had greater serum cholesterol (p = 0.02) than medium-producing cows. The cows fed PA tended to have a greater BUN than cows fed Ca-FA (p = 0.06). Alanine aminotransferase and aspartate aminotransferase tended to be increased by PA, which indicates that cows in PA treatment may have experienced more adverse effect on the liver function than cows on Ca-FA. Therefore, under heat stress and in 90 d trial, milk production level does not affect the cows' response to PA or Ca-FA. Although cows fed Ca-FA received lower energy than those fed PA, they compensated for this shortage likely with increasing the digestibility and produced a similar amount of milk.

Ecophysiological Interpretations on the Water Relations Parameters of Trees(IX) - Measurement of the Transpiration Rate by the Heat Pulse Method in a Quercus mongolica Stand - (수목(樹木)의 수분특성(水分特性)에 관(關)한 생리(生理)·생태학적(生態學的) 해석(解析)(IX) - Heat pulse법(法)을 이용(利用)한 신갈나무임분(林分)의 증산속도(蒸散速度) 측정(測定) -)

  • Han, Sang Sup;Kim, Sun Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.2
    • /
    • pp.288-299
    • /
    • 1996
  • This is the basic study to investigate the amount of transpirational water loss in thrifty mature Quercus mongolica stand by the heat pulse method. The differences of heat pulse velocity by direction and depth, differences of heat pulse velocity by dominant, codominant and suppressed trees, diurnal changes of heat pulse velocity due to the change of leaf water potential, vapor pressure deficit and radiation, and sap flow path way in sapwood by dye penetration were measured in stems. Finally the amounts of daily and annual transpiration in stand were calculated by the heat pulse velocity. The results obtained were summarized as follows : 1. Relationship between heat pulse velocity(V) and sap flow rate(SFR) was obtained as a equation of SFR=1.37V. 2. The sap flow rate was high in the order of dominant, codominant, and suppressed trees. The daily heat pulse velocity changed with radiation, temperature and vapor pressure deficit. 3. The heat pulse velocity showed the similar diurnal variation as the leaf water potential change. 4. The heat pulse velocity showed the highest value in May(4.0cm/hr in average), the lowest one in July(2.9cm/hr in average). 5. The heat pulse velocity in the same stem presented the highest value in the northern direction, medium in western, and the lowest in southern and eastern. 6. The heat pulse velocity in stem was highest in 0.5cm, medium in 1.0cm, and lowest in 1.5cm depth from the surface of stem. 7. The sap flow path way in stem showed sectorial straight ascent pattern in four sample trees. 8. The amount of sap flow(SF) was presented as a equation of $SF=1.37A{\cdot}V$(A: the cross-sectional area of sapwood, V: heat pulse velocity), and especially SF was larger in dominant tree than codominant and suppressed trees. 9. The amount of daily transpiration was 5.6ton/ha/day, and its composition ratio was 72% at day and 28% at night. 10. The amount of stand transpiration per month was largest in May(168ton/ha/month), lowest in July(125ton/ha/month). The amount of stand transpiration per year was 839ton/ha/year.

  • PDF

Fabrication of Silicon Window for Low-price Thermal Imaging System (저가형 열영상 시스템을 위한 실리콘 윈도우 제작)

  • Sung, Byung Mok;Jung, Dong Geon;Bang, Soon Jae;Baek, Sun Min;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.264-269
    • /
    • 2015
  • An infrared (IR) bolometer measures the change of resistance by absorbing incident IR radiation and generates a signal as a function of the radiation intensity. Since a bolometer requires temperature stabilization and light filtering except for the infrared rays, it is essential for the device to be packaged meeting conditions that above mentioned. Minimization of heat loss is needed in order to stabilize temperature of bolometer. Heat loss by conduction or convection requires a medium, so the heat loss will be minimized if the medium is a vacuum. Therefore, vacuum packaging for bolometer is necessary. Another important element in bolometer packaging is germanium (Ge) window, which transmits IR radiation to heat the bolometer. To ensure a complete transmittance of IR light, anti-reflection (AR) coatings are deposited on both sides of the window. Although the transmittance of Ge window is high for IR rays, it is difficult to use frequently in low-price IR bolometer because of its high price. In this paper, we fabricated IR window by utilizing silicon (Si) substrate instead of Ge in order to reduce the cost of bolometer packaging. To enhance the IR transmittance through Si substrate, it is textured using Reactive Ion Etching (RIE). The texturing process of Si substrate is performed along with the change of experimental conditions such as gas ratio, pressure, etching time and RF power.

Studies on the Proteolytic Enzyme of Mold (Part I) Production and Heat Resistance of Acid Protease by Rhizopus japonicus S-62 (사상균의 단백질분해효소에 관한 연구 (제1보) Rhizopus japonicus S-62에 의한 산성 생산 및 내열성시험)

  • 정만재
    • Microbiology and Biotechnology Letters
    • /
    • v.5 no.3
    • /
    • pp.153-158
    • /
    • 1977
  • These experiments were conducted to investigate the condition of the production and the heat resistance of the acid protease by Rhizopus japonicus S-62. The results obtained were as follows: 1) The optimum concentrations of sucrose, yeast, ammonium chloride and sodium phosphate monobasic added to the wheat bran medium in the acid protease production were 0.5%, 2.0%, 0.4%, and 0.4%, respectively. 2) KH$_2$PO$_4$ and NaH$_2$PO$_4$ were the most effective as the heat resistant agents. 3) When the enzyme solutions added with KH$_2$PO$_4$ and NaH$_2$PO$_4$ to the concentration of 2% were heated for 10 min, at 50$^{\circ}C$, their residual activities were 100%, respectively. 4) The heat resistant effects of KH$_2$PO$_4$ and NaH$_2$PO$_4$ were not observed almost above 55$^{\circ}C$.

  • PDF

Effect of NaCl on Thermal Resistance, Antibiotic Resistance, and Human Epithelial Cell Invasion of Listeria monocytogenes

  • Lee, Jin-Hee;Yoon, Hyun-Joo;Lee, Sun-Ah;Yoon, Yo-Han
    • Food Science of Animal Resources
    • /
    • v.32 no.5
    • /
    • pp.545-552
    • /
    • 2012
  • This study evaluated the effects of NaCl on heat resistance and Caco-2 cell invasion of Listeria monocytogenes in broth media and sausage. A 10-strain mixture of L. monocytogenes was inoculated in tryptic soy broth containing 0.6% yeast extract (TSBYE), and sausage formulated with 0, 2, 4, and 6% NaCl. The medium was stored at 7, 15, 20, and $25^{\circ}C$ for 3-16 d, and medium samples were withdrawn at the appropriate time and challenged to 55, 60, and $63^{\circ}C$ to evaluate the thermal resistance of the pathogen. Sausage samples were stored at 7 and $25^{\circ}C$, and they were exposed to $63^{\circ}C$ to evaluate thermal resistance. NaCl-habituated L. monocytogenes strains NCCP10811 and NCCP10943 were examined for 12 antibiotics and Caco-2 cell invasion assay (only L. monocytogenes NCCP10943). Bacterial populations of L. monocytogenes generally increased (p<0.05) during the heat challenge as NaCl concentrations increased in both TSBYE and sausage samples. The antibiotic resistance of L. monocytogenes was not observed ($p{\geq}0.05$) when it was exposed to a single concentration of NaCl in TSBYE, but the pathogen obtained resistance to some antibiotics when exposed to a sequential increase of NaCl concentration. Invasion efficiency of L. monocytogenes NCCP10943 was not increased ($p{\geq}0.05$) with NaCl concentration increase. These results indicate that NaCl may increase the resistance of L. monocytogenes to heat and to some antibiotics, but may not increase Caco-2 cell invasion of L. monocytogenes.