• 제목/요약/키워드: Heat loss induced self-excitation

검색결과 7건 처리시간 0.016초

질소로 희석된 프로판 동축류 층류 제트 부상화염에서 열손실에 의한 자기진동에 대한 동축류 속도 효과 (Effect of Coflow Air Velocity on Heat-loss-induced Self-excitation in Laminar Lifted Propane Coflow-Jet Flames Diluted with Nitrogen)

  • 이원준;윤성환;박정;권오붕;박종호;김태형
    • 한국연소학회지
    • /
    • 제17권1호
    • /
    • pp.48-57
    • /
    • 2012
  • Laminar lifted propane coflow-jet flames diluted with nitrogen were experimentally investigated to determine heat-loss-related self-excitation regimes in the flame stability map and elucidate the individual flame characteristics. There exists a critical lift-off height over which flame-stabilizing effect becomes minor, thereby causing a normal heat-loss-induced self-excitation with O(0.01 Hz). Air-coflowing can suppress the normal heat-loss-induced self-excitation through increase of a Peclet number; meanwhile it can enhance the normal heat-lossinduced self-excitation through reducing fuel concentration gradient and thereby decreasing the reaction rate of trailing diffusion flame. Below the critical lift-off height. the effect of flame stabilization is superior, leading to a coflow-modulated heat-loss-induced self-excitation with O(0.001 Hz). Over the critical lift-off height, the effect of reducing fuel concentration gradient is pronounced, so that the normal heat-loss-induced self-excitation is restored. A newly found prompt self-excitation, observed prior to a heat-loss-induced flame blowout, is discussed. Heat-loss-related self-excitations, obtained laminar lifted propane coflow-jet flames diluted with nitrogen, were characterized by the functional dependency of Strouhal number on related parameters. The critical lift-off height was also reasonably characterized by Peclet number and fuel mole fraction.

층류 동축류 제트 부상화염에서 부력에 의한 자기진동과 루이스 수에 의한 자기진동 비교에 관한 실험적 연구 (Experimental Study on Comparison between Buoyancy Driven and Lewis Number Induced Self-excitations in Laminar Lifted Coflow-jet Flames)

  • 이원준;박정;권오붕;윤진한;길상인
    • 한국연소학회지
    • /
    • 제19권2호
    • /
    • pp.21-27
    • /
    • 2014
  • Experimental study in laminar propane coflow jet flames has been conducted to investigate self-excitations. For various propane mole fractions and jet velocities, two types of self-excitation were observed: (1) buoyancydriven self-excitation (hereafter called BDSE) and (2) Lewis-number-induced self-excitation coupled with (1) (hereafter called LCB). The mechanism of Lewis-number-induced self-excitation (hereafter called LISE) is proposed. When the system $Damk\ddot{o}hler$ number was lowered, LISE was shown to be launched. The LISE is closely related to heat loss, such that it can be launched in even helium-diluted methane coflow-jet flame (Lewis number less than unity). Particularly, The LISE becomes significant as the $Damk\ddot{o}hler$ number decreases and heat-loss is excessively large.

층류제트 부상화염에서 열손실에 의한 자기진동에 관한 연구 (Study on Heat-Loss-Induced Self-Excitation in Laminar Lifted Jet Flames)

  • 윤성환;박정;권오붕;김정수;배대석;윤진한;길상인
    • 대한기계학회논문집B
    • /
    • 제35권3호
    • /
    • pp.309-319
    • /
    • 2011
  • 질소 희석된 프로판 부상화염에서 열손실에 의한 자기진동을 기초로 화염안정화선도를 도출하기 위하여 노즐직경 0.3 mm, 1.0 mm에서 실험적 연구를 수행하였다. 예혼합화염에서 확산화염으로의 전도 열손실에 의한 자기진동 및 매연 복사에 의한 자기진동을 관찰하였다. 0.1 Hz보다 낮은 주파수 성향을 띄는 열손실에 의한 자기진동은 제안된 메커니즘에 의해 잘 묘사되었고 반면 매연복사에 의한 자기진동은 O(0.1 Hz)의 주파수 범위를 나타내었으며 제안된 메커니즘은 항온항습실 실험을 통해 입증하였다. 질소 희석된 프로판 부상화염에서 관찰된 열손실에 의한 자기진동의 특성화는 관련된 변수 및 스트라훌 수에 의해 잘 묘사되었다.

직류전기장이 인가된 층류제트화염에서 물질 -열 확산과 부력에 의한 진동비교에 관한 연구 (A Comparative Study Between Diffusive-thermal and Buoyancy-driven Self-excitations in Laminar Free Jet Flames with Applied DC Electric Fields)

  • 한종규;윤성환;박정;권오붕;김태형;박종호
    • 한국연소학회지
    • /
    • 제17권1호
    • /
    • pp.37-47
    • /
    • 2012
  • Experimental study on comparison of diffusive-thermal self-excitation with buoyancy-driven one due to accumulation of partially premixed, preheated mixture in front of edge flame was conducted in horizontally and vertically injected laminar free-jet flames with an applied DC electric field of -10 kV. The application of horizontal injection method with the DC electric field to jet flames was experimentally designed to suppress heat-loss-induced self-excitation and thereby to highlight the definite difference between both diffusive-thermal and buoyancy-driven self-excitations with the same order of O(1.0 Hz), in that diffusive-thermal self-excitation has not been so far found experimentally in laminar jet flames. Flame stability maps in vertically and horizontally injected jet flames are presented. The distinct modes of individual self-excitation are shown to be well described by their own phase diagrams. The results show that buoyancy-driven self-excitation due to the accumulation of partially premixed, preheated mixtures in front of edge flame is branched from the buoyancy-induced self-excitation with O(10 Hz) due to a flame flicker. Once the buoyancy-driven self-excitation appears, it suppresses buoyancy-induced as well as diffusive-thermal self-excitation. The key characteristics for individual self-excitation are discussed and their functional dependencies of Strouhal number upon related physical parameters are also presented.

에지화염의 자기 진동 (Self-excitation of Edge Flame)

  • 박정;윤성환;정용호;이원준;권오붕
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.167-170
    • /
    • 2012
  • Self-excitations of edge flame were studied in laminar lifted free- and coflow-jet as well as counterflow flames diluted with nitrogen and helium. The self-excitations, originated from variation of edge flame speed and found in the above-mentioned configurations, are discussed. A newly found self-excitation and flame blowout, caused by the conductive heat loss from premixed wings to trailing diffusion flame are described and characterized in laminar lifted jet flames. Some trials to distinguish Lewis-number-induced self-excitation from buoyancy-driven one with O(1.0 Hz) are introduced, and then the differences are discussed. In counterflow configuration, important role of the outermost edge flame in flame extinction is also suggested and discussed.

  • PDF

층류 동축류 제트에서 공기측 헬륨 희석이 화염진동에 미치는 영향 (Helieum-dilution Effect of Coflow Air on Self-excitation in Laminar Coflow Jet Flames)

  • 이원준;박정;권오붕;백세현;고성호
    • 한국연소학회지
    • /
    • 제17권4호
    • /
    • pp.51-59
    • /
    • 2012
  • Experimental study in coflow jet flames has been conducted to investigate the helium-dilution effect of coflow air on self-excitation. For various helium mole fractions and jet velocities, two types of self-excitation were observed: buoyancy-driven self-excitation and Lewis-number-induced self-excitation(here after called Le-ISE) coupled with buoyancy-driven one. The difference between buoyancy-driven and Le-ISE is clarified by using the Mie-scattering visualization as well as exploring the different features. The mechanism of Le-ISE is proposed. When the system Damk$\ddot{o}$hler number was lowered, Le-ISE is shown to be launched. Le-ISE is closely related to heat loss, in that it can be launched in even methane jet flame (Lewis number less than unity) with helium-diluted coflow air. Particularly, Le-ISE becomes significant as the Damk$\ddot{o}$hler number decreases and heat-loss becomes significant.

질소 희석된 프로판 자유제트 층류부상화염에 있어서 화염 자기진동 특성에 관한 연구 (Study of Characteristics of Self-Excitation in Lifted Laminar Free-Jet Propane Flames Diluted with Nitrogen)

  • 윤성환;박정;권오붕;배대석
    • 대한기계학회논문집B
    • /
    • 제34권4호
    • /
    • pp.399-408
    • /
    • 2010
  • 질소 희석된 프로판 층류 부상 화염에서 화염진동 불안정성과 화염 곡률 효과를 살펴보기 위하여 실험적 연구를 수행하였다. 화염 진동은 총 3가지 영역으로 열손실에 의한 진동, 열손실 및 부력이 혼재된 진동, 그리고 열손실 및 루이스 수에 의한 영향이 혼재된 진동으로 구분되었다. 순수 열손실에 의한 진동은 루이스 수에 의한 진동과 부력에 의한 수력학적 불안정성과 관련이 없으며 연료 루이스 수에 관계없이 모든 부상화염 조건에서 관찰되었다. 화염의 시간에 따른 부상높이 변화에 대한 FFT분석을 통해 화염진동 불안정성의 실험적 증거와 특성을 명확히 제시하였고, 부상 화염의 열손실에 의한 자기진동의 메커니즘에 대한 시나리오를 논의한다.