• 제목/요약/키워드: Heat load ratio

검색결과 185건 처리시간 0.043초

정적연소기에서 순간온도를 이용한 열유속에 관한 연구 (Study on the Heat Flux Using Instantaneous Temperature in the Constant Volume Combustion Chamber)

  • 이치우;김지훈;하종률;김시범
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.103-111
    • /
    • 2001
  • In the present study, the internal combustion engine tends to high performance, fuel economy, small-sized. Therefore, it is necessary to solve the problems on thermal load, abnormal combustion, etc in the engine. Thin film instantaneous temperature probe was made, and the measuring system was established. The instantaneous surface temperatures in the constant volume combustion chamber were measured with this system and the heat flux was obtained by Fourier analysis. Maximum instantaneous temperatures were obtained after 55∼60ms from ignition and they increased as equivalence ratio and varied differently as the position of probe. Total heat loss during combustion time was affected by the equivalence ratio and differed widely as the position of probe.

  • PDF

선형 및 비선형 부하 사용시 전류 및 부하불평형률에 대한 연구 (A Study on the Current & Load Unbalance Factor in using Linear & Nonlinear Load)

  • 김종겸;김지명
    • 전기학회논문지
    • /
    • 제66권8호
    • /
    • pp.1291-1296
    • /
    • 2017
  • Single-phase and three-phase load can be used together in 3-phase 4-wire system. Single-phase and three-phase loads can be classified as linear loads without harmonics and nonlinear with harmonics. Single-phase linear loads are linear loads such as lamps and heat, and single-phase nonlinear loads are power converters such as rectifiers. It is recommended that the distribution of loads in the 3-phase, 4-wire distribution lines be evenly distributed within a certain range. However, harmonic currents generated in a nonlinear load flow on the neutral line and affect the phase current magnitude. The difference in the magnitude of the individual phase current due to the influence of the harmonic current present in the neutral line can produce a difference in current and load unbalance. In this study, current unbalance ratio and load unbalance ratio which can occur when a combination of linear and nonlinear loads are applied to 3-phase 4-wire distribution line are calculated.

Postfire reliability analysis of axial load bearing capacity of CFRP retrofitted concrete columns

  • Cai, Bin;Hao, Liyan;Fu, Feng
    • Advances in concrete construction
    • /
    • 제10권4호
    • /
    • pp.289-299
    • /
    • 2020
  • A reliability analysis of the axial compressive load bearing capacity of postfire reinforced concrete (RC) columns strengthened with carbon fiber reinforced polymer (CFRP) sheets was presented. A 3D finite element (FE) model was built for heat transfer analysis using software ABAQUS. Based on the temperature distribution obtained from the FE analysis, the residual axial compressive load bearing capacity of RC columns was worked out using the section method. Formulas for calculating the residual axial compressive load bearing capacity of the columns after fire exposure and the axial compressive load bearing capacity of postfire columns retrofitted with CFRP sheets were developed. Then the Monte Carlo method was used to analyze the reliability of the axial compressive load bearing capacity of the RC columns retrofitted with CFRP sheets using a code developed in MATLAB. The effects of fire exposure time, load ratio, number of CFRP layers, concrete cover thickness, and longitudinal reinforcement ratio on the reliability of the axial compressive load bearing capacity of the columns after fire were investigated. The results show that within 60 minutes of fire exposure time, the reliability index of the RC columns after retrofitting with two layers of CFRPs can meet the requirements of Chinese code GB 50068 (GB 2001) for safety level II. This method is effective and accurate for the reliability analysis of the axial load bearing capacity of postfire reinforced concrete columns retrofitted with CFRP.

터빈 동익 스퀼러팁 표면에서의 열(물질)전달 특성 (Heat/Mass Transfer Characteristics on the Squealer Tip Surface of a Turbine Rotor Blade)

  • 문현석;이상우
    • 한국유체기계학회 논문집
    • /
    • 제12권1호
    • /
    • pp.35-42
    • /
    • 2009
  • The flow and heat/mass transfer characteristics on the squealer tip surface of a high-turning turbine rotor blade have been investigated at a Reynolds number of $2.09{\times}10^5$, by employing the oil-film flow visualization and naphthalene sublimation technique. The squealer rim height-to-chord ratio and tip gap height-to-chord ratio are fixed as typical values of $h_{st}/c$ = 5.5% and h/c = 2.0%, respectively, for turbulence intensities of Tu = 0.3% and 15%. The results show that the near-wall flow phenomena within the cavity of the squealer tip are totally different from those over the plane tip. There are complicated backward flows from the suction side to the pressure side near the cavity floor, in contrast to the plane tip gap flows moving toward the suction side after flow separation/reattachment. The squealer tip provides a significant reduction in tip surface thermal load with less severe gradient compared to the plane tip. In this study, the tip surface is divided into six different regions, and transport phenomena at each region are discussed in detail. The mean thermal load averaged over the squealer cavity floor is augmented by 7.5 percents under the high inlet turbulence level.

퍼지 논리를 이용한 일일 냉방부하 예측에 관한 연구 (A Study on Daily Cooling Load Forecast Using Fuzzy Logic)

  • 신관우;이윤섭
    • 제어로봇시스템학회논문지
    • /
    • 제8권11호
    • /
    • pp.948-953
    • /
    • 2002
  • The electric power load during the peak time in summer is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system are possible solutions to settle this problem. In this study. the method of estimating temperature and humidity to forecast the cooling load of ice-storage system is suggested, then the method of forecasting the cooling load using fuzzy logic is suggested by simulating that the cooling load is calculated using actual temperature and humidity. The forecast of the temperature, humidity and cooling load are simulated, and it is shown that the forecasted data approach to the actual data. Operating the ice-storage system by the forecast of cooling load with night electric power will improve the ice-storage system efficiency and reduce the peak electric power load during the summer season as a result.

Al5083-O GMA 용접부의 입열량과 보호가스 혼합비율에 따른 강도 평가 (The Strength Evaluation of Al5083-O GMA Welding Zone According to the Heat Input and Mixing Shield Gas Ratio)

  • 이동길;양훈승;정재강
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.158-165
    • /
    • 2002
  • This study was to evaluate mechanical properties and toughness of the Al5083-O aluminum alloy welding zone according to the mixing shield gas ratio and heat input change. The GMA(Gas Metal Arc) welding of the base metal was carried out with four different mixing shield gas ratios(Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%) and three different heat inputs(low, medium, and high). To investigate the Charpy absorbed energy of the weld zone, the specimens were divided base metal, weld metal, fusion line, and HAZ notched specimen according to the worked notch position. The different gas ratio and heat input had little effect upon the tensile strength. But Ar33%+He67% mixture had the greatest mechanical properties considering that the more He gas ratio concentrations, the higher yield strength and elongation. The maximum load and displacement of the weld metal notche specimen was so much low more than that of the base metal, but fusion line and HAZ notched specimens showed almost same regardless of the mixing shield gas ratio and heat input. The Charpy absorbed energy was lowest in weld metal notched specimen, and increased in the fusion line, and HAZ notche specimen in order. Ar33%+He67% mixture had the greatest toughness considering that the more He gas ratio, the higher absorption energy.

9% Ni강의 피로균열진전거동에 관한 연구 (A Study on the Fatigue Crack Growth Behavior of 9% Ni Steels)

  • 심규택;김재훈;이관희;안병욱;김영균
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.167-172
    • /
    • 2008
  • This study is to evaluate the fatigue crack growth characteristics for base metals and welded metal of 9% Ni steels. Since this material has very excellent fracture toughness at low temperature, it has been widely used for inner walls of LNG storage tank. These materials to compare fatigue crack growth (FCG) behaviour are treated with heat by the method of quenching and tempering (QT), and quenching, lamellarizing and tempering (QLT). FCG tests using compact temsion (CT) specimen under stress ratio R=0.1, 0.5, and constant load are carried out. K-increasing tests are conducted by the standard test method described in ASTM E 647. To investigate the effect of welded metal on the crack growth rate, the locations of notch tip were chosen at the center of welded metal and heat affected zone (HAZ). Form the results, FCG rate has almost same tendency according to stress ratio, base and welded metal, the locations of welded metal. FCG rate of welded metal is somewhat faster than base metal. Also scanning electron microscope (SEM) is used to observe the striation of the fractured surface after fatigue crack tests.

  • PDF

신경회로망을 이용한 냉방부하예측에 관한 연구 (The Study on Cooling Load Forecast using Neural Networks)

  • 신관우;이윤섭
    • 설비공학논문집
    • /
    • 제14권8호
    • /
    • pp.626-633
    • /
    • 2002
  • The electric power load during the peak time in summer is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system etc. are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice storage system is suggested. And also the method of forecasting the cooling load using neural network is suggested. For the simulation, the cooling load is calculated using actual temperature and humidity, The forecast of the temperature, humidity and cooling load are simulated. As a result of the simulation, the forecasted data is approached to the actual data.

The Study on Cooling Load Forecast of an Unit Building using Neural Networks

  • Shin, Kwan-Woo;Lee, Youn-Seop
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권4호
    • /
    • pp.170-177
    • /
    • 2003
  • The electric power load during the summer peak time is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice storage system and heat pump system etc. are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice storage system is suggested. The method of forecasting the cooling load using neural network is also suggested. The daily cooling load is mainly dependent on actual temperature and humidity of the day. The simulation is started with forecasting the temperature and humidity of the following day from the past data. The cooling load is then simulated by using the forecasted temperature and humidity data obtained from the simulation. It was observed that the forecasted data were closely approached to the actual data.

CFT 기둥의 축력비 및 압축강도 변화에 따른 화재거동 영향인자에 관한 실험적 연구 (An Experimental Study on the Fire Resistance effect on load ratio and compressive strength of the CFT Column under loading in fire)

  • 조경숙;김흥열;김형준;권인규;박경훈
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2010년도 춘계학술논문발표회 논문집
    • /
    • pp.371-376
    • /
    • 2010
  • The strength of steel material in a concrete filled steel tube (CFT) is reduced in fire, but the filled interior concrete structurally ensures the fire resistance due to its high thermal capacity. More, the contractibility of CFT is excellent since it can be constructed without form work. This research analyzed the interior concrete strength and deformation characteristics, which are the influence factors of the fire resistance of CFT, in proportion to the axial load ratio. The fire resistance performance according to changes of the axial load ratio showed great fluctuation. As $280{\times}280{\times}6$ CFT columns with the concrete strengths of 24 MPa and 40 MPa and the axial load ratios of 0.9, 0.6, and 0.2 in accordance with KS F 2257-1 and 7 were heated with loading to examine the fire resistance performance, the 24 MPa concrete exhibited the fire resistance time as 27, 113, and 180 minutes for the axial load ratios, 0.9, 0.6, and 0.2 respectively. In case of 40 MPa concrete, the fire resistance time were turned out to be 19 and 28 minutes for the axial load ratios, 0.9 and 0.6 respectively. The results of 40 MPa concrete showed the much lower fire resistance performance when comparing with those of 24 MPa concrete. The fire resistance performance was not increased significantly when the axial load ratio was reduced. Therefore, the deceased fire resistance performance of high strength concrete is assumed to be caused by the internal pressure increase upon the heat application.

  • PDF