• 제목/요약/키워드: Heat integration

검색결과 222건 처리시간 0.029초

Toward residential building energy conservation through the Trombe wall and ammonia ground source heat pump retrofit options, applying eQuest model

  • Ataei, Abtin;Dehghani, Mohammad Javad
    • Advances in Energy Research
    • /
    • 제4권2호
    • /
    • pp.107-120
    • /
    • 2016
  • The aim of this research is to apply the eQuest model to investigate the energy conservation in a multifamily building located in Dayton, Ohio by using a Trombe wall and an ammonia ground source heat pump (R-717 GSHP). Integration of the Trombe wall into the building is the first retrofitting measure in this study. Trombe wall as a passive solar system, has a simple structure which may reduce the heating demand of buildings significantly. Utilization of ground source heat pump is an effective approach where conventional air source heat pump doesn't have an efficient performance, especially in cold climates. Furthermore, the type of refrigerant in the heat pumps has a substantial effect on energy efficiency. Natural refrigerant, ammonia (R-717), which has a high performance and no negative impacts on the environment, could be the best choice for using in heat pumps. After implementing the eQUEST model in the said multifamily building, the total annual energy consumption with a conventional R-717 air-source-heat-pump (ASHP) system was estimated as the baseline model. The baseline model results were compared to those of the following scenarios: using R-717 GSHP, R410a GSHP and integration of the Trombe wall into the building. The Results specified that, compared to the baseline model, applying the R-717 GSHP and Trombe wall, led to 20% and 9% of energy conservation in the building, respectively. In addition, it was noticed that by using R-410a instead of R-717 in the GSHP, the energy demand increased by 14%.

Quantifying Architectural Impact of Liquid Cooling for 3D Multi-Core Processors

  • Jang, Hyung-Beom;Yoon, Ik-Roh;Kim, Cheol-Hong;Shin, Seung-Won;Chung, Sung-Woo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제12권3호
    • /
    • pp.297-312
    • /
    • 2012
  • For future multi-core processors, 3D integration is regarded as one of the most promising techniques since it improves performance and reduces power consumption by decreasing global wire length. However, 3D integration causes serious thermal problems since the closer proximity of heat generating dies makes existing thermal hotspots more severe. Conventional air cooling schemes are not enough for 3D multi-core processors due to the limit of the heat dissipation capability. Without more efficient cooling methods such as liquid cooling, the performance of 3D multi-core processors should be degraded by dynamic thermal management. In this paper, we examine the architectural impact of cooling methods on the 3D multi-core processor to find potential benefits of liquid cooling. We first investigate the thermal behavior and compare the performance of two different cooling schemes. We also evaluate the leakage power consumption and lifetime reliability depending on the temperature in the 3D multi-core processor.

P-N 근사법을 이용한 원관주위 층류 경계층내 조합 열전달 전달 특성 해석 (A Numerical Analysis of Characteristics of Combined Heat Transfer in Laminar Layer Along Cylinderical Periphery by P-N Method)

  • 이종원;이창수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권2호
    • /
    • pp.10-19
    • /
    • 1995
  • Heat trnasfer for absorbing and emitting media in laminar layer along the cylinders has been analyzed. Governing equation are transformed to local nonsimilarity equations by the dimensional analysis. The effects of the Stark number, Prandtl number, Optical radius and wall emissivity are mainly investigated. For the formal solution a numerical integration is performed and the results are compared with those obtained by P-1 and P-3 approximation. The results show that boundary layers consist of conduction-convection-radiation layer near the wall and convection-radiation layer far from the wall. As the Stark number of wall emissivity increases the local radiative heat flux is increased. The Pradtl number or curvature variations do not affect the radiative heat flux from the wall, but The Prandtl number or wall emissivity variations affect the conduction heat flux. Consequently the total heat flux from the wall are affected by the Prandtl number or wall emissivity variation.

  • PDF

유한한 평판에서 포물선형 및 쌍곡선형 열전도 방정식과 파동 방정식의 비교 해석 (Comparative Analysis of the Parabolic and Hyperbolic Heat Conduction and the Damped Wave in a Finite Medium)

  • 박상규;이용호
    • 동력기계공학회지
    • /
    • 제3권3호
    • /
    • pp.14-21
    • /
    • 1999
  • The wave nature of heat conduction has been developed in situations involving extreme thermal gradients, very short times, or temperatures near absolute zero. Under the excitation of a periodic surface heating in a finite medium, the hyperbolic and parabolic heat conduction equations and the damped wave equations in heat flux are presented for comparative analysis by using the Green's function with the integral transform technique. The Kummer transformation is also utilized to accelerate the rate of convergence of these solutions. On the other hand, the temperature distributions are obtained through integration of the energy conservation law with respect to time. For hyperbolic heat conduction, the heat flux distribution does not exist throughout all the region in a finite medium within the range of very short times(${\xi}<{\eta}_l$). It is shown that due to the thermal relaxation time, the hyperbolic heat conduction equation has thermal wave characteristics as the damped wave equation has wave nature.

  • PDF

반도체 패키지 EMC의 열물성 연구 (Thermophysical Properties of Epoxy Molding Compound for Microelectronic Packaging)

  • 이상현;도중광;송현훈
    • 반도체디스플레이기술학회지
    • /
    • 제3권4호
    • /
    • pp.33-37
    • /
    • 2004
  • As the high speed and high integration of semiconductor devices and the generation of heat increases resulted in the effective heat dissipation influences on the performance and lifetime of semiconductor devices. The heat resistance or heat spread function of EMC(epoxy molding compound) which protects these devices became one of very important factors in the evaluation of semiconductor chips. Recently, silica, alumina, AlN(aluminum nitride) powders are widely used as the fillers of EMC. The filler loading in encapsulants was high up to about 80 vol%. A high loading of filler was improved low water absorption, low stress, high strength, better flowability and high thermal conductivity. In this study, the thermal properties were investigated through thermal, mechanical and microstructure. Thermophysical properties were investigated by laser flash and differential scanning calorimeter(DSC). For detailed inspection of materials, the samples were examined by SEM.

  • PDF

고방열 절연시트의 기술개발 동향 (Review of Technology Development of High Heat Dissipative Insulating Sheet)

  • 유명재;박성대;임호선;이우성
    • 마이크로전자및패키징학회지
    • /
    • 제19권1호
    • /
    • pp.9-16
    • /
    • 2012
  • Currently due to increasing integration of various electronic devices and need of multi-functions, more and more heat is produced and for electronic devices to achieve maximum performance with optimum life time, heat dissipation is critical. A solution to such problems is use of high heat dissipative insulating sheet. In this paper status of current products are introduced and several technology aspects to meet the demand of increased heat dissipation needs is introduced.

고정확도의 인공위성 궤도 열하중 계산 기법 (High Fidelity Calculation of Thermal Load in a Satellite Orbit)

  • 김민기
    • 한국항공우주학회지
    • /
    • 제45권10호
    • /
    • pp.898-906
    • /
    • 2017
  • 본 논문은 우주선의 우주궤도 상에서 받는 외부 열원을 효과적이고 정확하게 계산할 수 있는 방법에 대해 논한다. 우주 외부 열원은 크게 태양직사광, 지구반사광, 지구복사열 세가지로 구분할 수 있다. 본 논문은 지구반사광과 지구복사열이 확산반사 및 방사를 따른다고 가정하고 지구표면을 다수의 구역들로 분할하여 이들과 인공위성 표면과의 반사/복사열을 계산하여 합산하였다. 본 연구에는 이들의 엄밀 적분식을 적용하여 수렴성을 극대화하였으며 많은 경우 정확한 결과를 가져올 수 있음을 알 수 있다. 그리고 외부 열원과 위성 표면 사이의 광선 차폐를 판단하기 위해 KD Tree Ray Tracing을 적용한 인공위성 궤도 열하중 계산 알고리즘을 개발하였다.

부하추종형 고효율 지열히트펌프 시스템에 관한 연구 (1) (A Study on the High Efficiency Ground Source Heat Pump System (1))

  • 고득용;김욱중;최상규;장기창
    • 신재생에너지
    • /
    • 제1권4호
    • /
    • pp.30-37
    • /
    • 2005
  • Cycle simulation of Ground Source Heat Pump[GSHP] system was carried out to determine the design specification of basic components such as turbo compressor and heat exchangers. Part load operation characteristics of the designed GSHP system was estimated using the compressor and heat exchanger performance data. A 50RT class turbo compressor for GSHP system is now under development, in which R134a refrigerant is adopted as working fluid. The compressor with variable cascade diffusers is designed to work both in cooling and heating modes so that it can actively keep up with the climate change with high efficiency. The normal running speeds of the compressor are 59000rpm for heating mode and 70000rpm for tooling mode respectively. It has two identical impellers at both ends of the rotor so as to minimize aero-induced thrust force effectively. GSHP system was coupled with a vortical type heat exchanger, and heat gain and heat loss from ground were evaluated per a bore hole. For the optimal integration of the heat pump system, its header for circulating fluid was combined with the ground heat exchangers in parallel and series configuration.

  • PDF

Establishing non-linear convective heat transfer coefficient

  • Cuculic, Marijana;Malic, Neira Toric;Kozar, Ivica;Tibljas, Aleksandra Deluka
    • Coupled systems mechanics
    • /
    • 제11권2호
    • /
    • pp.107-119
    • /
    • 2022
  • The aim of the work presented in this paper is development of numerical model for prediction of temperature distribution in pavement according to the measured meteorological parameters, with introduction of non-linear heat transfer coefficient which is a function of temerature difference between the air and the pavement. Developed model calculates heat radiated from the pavement back in the air, which is an important part of the heat trasfer process in the open air surfaces. Temperature of the pavement surface, heat radiation together with many meteorological parameters were measured in series during two years in order to validate the model and calibrate model parameters. Special finite element method for temperature heat transfer towards the soil together with the time integration scheme are used to solve the governing equation. It is proved that non-linear heat transfer coefficient, which is a function of time and temperature difference between the air and the pavement, is required to decribe this phenomena. Proposed model includes heat tranfer coefficient callibration for specific climate region, through the iterative inverse procedure.