• Title/Summary/Keyword: Heat insulation

Search Result 888, Processing Time 0.027 seconds

Low Temperature Co-firing of Camber-free Ceramic-metal Based LED Array Package (세라믹-금속 기반 LED 어레이 패키지의 저온동시소성시 휨발생 억제 연구)

  • Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.35-41
    • /
    • 2016
  • Ceramic-metal based high power LED array package was developed via thick film LTCC technology using a glass-ceramic insulation layer and a silver conductor patterns directly printed on the aluminum heat sink substrate. The thermal resistance measurement using thermal transient tester revealed that ceramic-metal base LED package exhibited a superior heat dissipation property to compare with the previously known packaging method such as FR-4 based MCPCB. A prototype LED package sub-module with 50 watts power rating was fabricated using a ceramic-metal base chip-on-a board technology with minimized camber deformation during heat treatment by using partially covered glass-ceramic insulation layer design onto the aluminum heat spread substrate. This modified circuit design resulted in a camber-free packaging substrate and an enhanced heat transfer property compared with conventional MCPCB package. In addition, the partially covered design provided a material cost reduction compared with the fully covered one.

A Numerical and Experimental Study of Heat Transfer through a Double Pane Window to Enhance Thermal Insulation of Building (건물 에너지 절약을 위한 수치해석적/실험적 이중창 열전달 연구)

  • 장동순;송은영;이상일
    • Journal of Energy Engineering
    • /
    • v.1 no.1
    • /
    • pp.66-75
    • /
    • 1992
  • The performance of heat transfer through double pane window has been investigated using experimental and numerical methods. The range of the gap distance between glasses are 0.5-10 cm. The convection heat transfer plays the dominant role for the case of the wide gap distance together with the large Rayleigh number and thereby, reduces the enhanced thermal resistance due to the increased air gap, while the conduction heat transfer does the major role for the case of small gap distance. In order to enhance the thermal insulation of the double pane window, the heat transfer of triple pane window, which is constructed to put one more glass at the middle of the double pane, is investigated to check the reduction of the convection heat transfer together with the effect of the radiation shield due to the presence of the additional glass. Further, a spacer is installed at the middle height of the double pane, and the effect of which on the suppression of the convective heat transfer is analyzed carefully, using experimental and numerical methods. For the case of the spacer-installation, the amount of energy saving is considered about 10%, but the energy saving increases a lot to 30-50% for the case of triple pane window, due to the substantial radiation shield effect of the presence of the additional glass.

  • PDF

A Basic Study on the Air Circulation System for Heating using Solar and Geothermal Heat - Focused on Trombe Wall Thermal Storage Performance using Solar Heat - (태양열과 지열을 이용한 난방용 공기순환시스템 기초연구 - 태양열을 이용한 트롬월식의 축열성능 중심으로 -)

  • Kim, Byung-Yun;Choi, Yong-Seok
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.19 no.4
    • /
    • pp.49-56
    • /
    • 2017
  • Each country in the world currently concentrates on shifting into clean energy, which can be alternative energy, for global environment protection and solution to the problem of fossil fuel depletion. The Korean government is predicted to develop renewable energy, such as solar power, ground power, and offshore wind power, and to increase their supply ratios by ending the use of coals and nuclear power plants. This study conducted experiments on thermal storage performance of Trombe wall thermal storage materials using solar power and simulations in order to offer baseline data for the development of a hybrid air circulation system for heating that can maximize efficiency by simultaneously using solar and geothermal power. The study results are as follows: (1) In all the specimens with 3m, 5m, and 7m in the length of thermal storage pipe, $5.7^{\circ}C$, $7.8^{\circ}C$, and $10.5^{\circ}C$ rose, respectively, as the thermal storage effect of the specimens attaching insulation film and black tape to the general funnel. They were most excellent in terms of thermal storage effect. (2) As a result of thermal performance evaluation on the II type specimens, II-3 ($7.8^{\circ}C$ rise) > II-4 ($5.3^{\circ}C$ rise) > II-1 ($3.9^{\circ}C$ rise) > II-2 ($2.3^{\circ}C$ rise) was revealed, and thus II-3 (insulation film + black tape) was most effective as shown in the I type. (3) This study analyzed air current and temperature distribution inside of the greenhouse by linking actually measured values and simulation interpretation results through the interpretation of CFD (computational fluid dynamics). As a result, the parts absorbing heat and discharging heat around the thermal storage pipe could be visibly classified, and temperature distribution inside of the greenhouse around the thermal storage pipe could be figured out.

Experimental of the Rotaing Cryogenic System (회전하는 극저온 시스템의 단열 특성에 관한 실험적 연구)

  • 이창규;정상권
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 2000
  • A rotating cryogenic system was designed similar to the cooling system for the rotor of a superconducting generator. The experimental rotor has an inner vessel which simulates the winding space of an actual superconducting rotor, and a torque tube of comparable design. This paper describes the evaluation of the total heat leak into the inner vessel that leads to the study of the heat transfer characteristic of the rotating cryogenic system. To examine the insulation performance of the experimental rotor. temperature was measured at each part of the system at various rotaing speeds from 0 rpm to 600 rpm. Total heat leak into the inner vessel was calculated by measuring the boil-off rate of liquid helium. Conduction heat leak to the inner vessel was obtained by the vent tube, and radiation heat leak was calculated by subtracting the conduction heat lent from the total heat leak. There seemed to be no rotaional dependency of total heat leak at least up 600 rpm.

  • PDF

Heat Transfer Coefficient, Heat Release and Gas Hazard Tests for Expanded Polystyrene Heat Insulating Materials with Aluminum Foil (알루미늄 호일 부착 발포 폴리스티렌 단열재의 열전도율, 열방출시험 및 가스 유해성 시험)

  • Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.4
    • /
    • pp.15-19
    • /
    • 2018
  • The purpose of this study is to enhance heat insulation effect and to decrease fire hazard by attaching aluminum foil to expanded polystyrene, which is mainly used for insulating materials, to have fire retardant. The result of the test confirmed that the insulating materials, expanded polystyrene of $10kg/m^3$ and $14kg/m^3$ of density attached aluminum foil on both sides, showed 12%, 14% of improved heat transfer coefficient respectively compared to existing expanded polystyrene of the same density. Besides, they met all the standards for the testing of heat release and gas hazard. On the other hand, the one made of general expanded polystyrene could not meet the standards of the heat release test and the gas hazard test.

Thermal Insulation and Flame Retardant Properties of Cement Based Super Light-weight Inorganic Thermal Insulation using 100㎛ Grade Glass Bubble (100㎛급 글라스 버블 혼입 시멘트계 초경량 무기 단열재의 단열 및 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.642-649
    • /
    • 2021
  • Energy saving standard for buildings are strengthened, the application of exterior insulation finishing system and thickness of insulation materials are increasing. Most buildings with exterior insulation finishing system is applied organic insulating material. Organic insulating material have workability, economic feasibility, reduction in construction cost, and excellent thermal insulation performance. However, Organic insulating material is very vulnerable to heat, so when a fire occurs, rapid fire spread and toxic gas are generated, causing many casualties. Inorganic insulating material can be non-combustible performance, but it is heavy and has low thermal insulation performance. Mineral wool has higher thermal insulation performance than other types of inorganic insulating material, but mineral wool is disadvantageous to workability and vulnerable to moisture. Glass bubble are highly resistant to water and chemically stable substances. In addition, the density of the glass bubble is very low and the particles are spherical, fluidity is improved by the ball bearing effect. Glass bubbles can be used with cement-based ino rganic insulating material to impro ve the weight and thermal insulatio n perfo rmance o f cement-based inorganic insulation. This study produced a inorganic insulating materials were manufactured using cement-based materials and glass bubble. In order to evaluate the insulation performance and flame retardant performance of cement-based super light-weight inorganic insulating materials using with glass bubble, insulation performance or flame retardant and non-combustible performance were evaluated after manufacturing insulating materials using micro cement and two types of glass bubbles. From the test result, Increasing the mixing ratio of glass bubbles improved the insulation performance of cement-based super light-weight inorganic insulating materials, and when the mixing ratio of glass bubbles was 10%, it sho wed sufficient flame retardant and no n-co mbustible perfo rmance.

Survey Research on Thermal Situation of Office Buildings (사무소 건축물의 단열상황에 관한 조사연구)

  • Jung, Ui In;Kim, Bong Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.145-152
    • /
    • 2013
  • This study is to evaluate the thermal insulation of the curtain wall of the buildings constructed since the 1990s to the buildings currently under construction in 2011 and to provide the basic data for repairing and reinforcing and designing the thermal insulation. To this effect, the temperature difference by part was analyzed through measuring the inside and outside surface temperature of the curtain wall of the office building, and thereafter, the conditions of the thermal insulation and the thermal bridge part were examined. The result of the study is as follows; Not only in the winter season when the temperature difference between the indoor-outdoor is over $20^{\circ}C$, but also in the summer season when there is a small temperature difference, the temperature difference between the inside and outside of the frame is $2^{\circ}C{\sim}4^{\circ}C$ equally. Under such conditions as stated above, the thermal bridge occurred, which resulted from the heat flow of the steel frame part (mullion, transom), and therefore, the reinforcement of the thermal insulation is considered to be needed.

Development of the Passive Outside Insulation Composite Panel for Energy Self-Sufficiency of Building in the Region (지역 건축물의 에너지 자립을 위한 패시브 외단열 복합패널 개발 연구)

  • Moon, Sun-Wook
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • The study aims to address the energy crisis and realize self-sufficiency of building as part of local energy independence, breaking away from a single concentrated energy supply system. It is intended to develop modules of the outside insulation composite panels that conform to passive certification criteria and for site-assembly systematization. The method of study first identifies trends and passive house in literature and advanced research. Second, the target performance for development is set, and the structural material is selected and designed to simulate performance. Third, a test specimen of the passive outside insulation curtain wall module designed is manufactured and constructed to test its heat transmission coefficient, condensation performance and airtightness. Finally, analyze performance test results, and explore and propose ways to improve the estimation and improvement of incomplete causes to achieve the goal. The final test results achieved the target performance of condensation and airtightness, and the heat transmission coefficient was $0.16W/(m^2{\cdot}K)$, which is $0.01W/(m^2{\cdot})K$ below the performance target. As for the lack of performance, we saw a need for a complementary design to account for simulation errors. It also provided an opportunity to recognize that insulated walls with performance can impact performance at small break. Thus, to be commercialized into a product with the need for improvement in the design of the joint parts, a management system is needed to increase the precision in the fabrication process.

Air-containing Multi-functional Jacket Design Utilizing Modular Systems - Focused on Cushioning, Heat Insulation and Portability - (모듈러 시스템을 이용한 공기주입형 다기능 재킷 디자인 - 쿠션, 보온, 휴대 기능을 중심으로 -)

  • Son, Sue-Min
    • The Research Journal of the Costume Culture
    • /
    • v.20 no.2
    • /
    • pp.222-237
    • /
    • 2012
  • Air-containing fashion, which can offer diverse functions through the inflow and outflow of air, is highly relevant in today's mobile society, where people are experiencing a wider range of environments. This study attempts to suggest the possibility of air-containing multi-functional fashion that could continuously be utilized by developing a design for an air-containing jacket using modular systems. In this research, the modular systems in architecture and furniture design were referenced through a review of the literature for the purpose of establishing modular systems in fashion. Functions relevant to the mobility of today's society are derived from the results of advanced research and applied to the design of modules of the jacket. The modules are integrated through the modular systems. The folding and unfolding structure in architecture and furniture is applied as a folding system in fashion, the vertical accumulation structure as a layering system, and the horizontal integration structure as a combining system, and in addition, the containing system has emerged in fashion. Each module is designed to fulfill certain functions, such as cushioning, heat insulation, and portability. The folding system is utilized in designing the cushion module to support the neck and back of a wearer by making its hood and hem fold in the back. The application of a layering system was suggested by making the vest, combined with the neck cushion and back cushion via the combining system, layered with its insulation module. By applying the combining system, the hood that includes the neck cushion, the skirt that includes the back cushion, the body that includes the insulation module, and the sleeves can be connected and separated by a zipper. The applicability of this concept was proven by applying a developed design to an actual item.