• Title/Summary/Keyword: Heat input distribution

Search Result 146, Processing Time 0.032 seconds

A study on numerical analysis of heat affected zone in detailed shape processing using Non-contact hot tool (비접촉식 열 공구를 이용한 미세 형상 가공에서의 열 영향부에 대한 수치적 모사에 관한 연구)

  • 김효찬;안동규;이상호;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.569-572
    • /
    • 2003
  • In VLM-ST process, the fine detailed shape processing process is needed due to the use of thick sheets for layers. The developed process perform the fine detailed shape processing in VLM-ST parts using non-contact hot tool. To predict the heat-affected zone and temperature distribution of VLM-ST parts in detailed shaping, the heat flux from the tool to the surface was calculated for the finite element analysis by modeling the tool as a heat source of radiation. The dominant process parameters such as the radiated heat input, the tool speed, and the gap between the tool tip and the foam sheet (tool height) were considered in the analysis. The results showed a good agreement with the experiments.

  • PDF

A Study on the Predicting Transverse Residual Stress at the ultra thick FCA butt weldment of hatch coaming in a Large Container Ship (대형 컨테이너선의 해치 코밍 FCA 맞대기 용접부의 횡 방향 잔류응력 예측에 관한 연구)

  • Shin, Sang-Beom;Lee, Dong-Ju;Park, Dong-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.102-102
    • /
    • 2009
  • The purpose of this study is to establish the predictive equation of transversal residual stress at the thick weldment of large container ship. In order to do it, the variables used for this study were restraint degree, yield strength of base material, thickness of weldment and welding heat input. Here, the level of restraint degree at the thick weldment of container ship having the various welding sequence was calculated using FEA. From the result, the h-type specimen was designed to simulate the level of restraint degree at the actual weldment of containership. With H-type test specimen designed, the effect of the variables on the distribution of transversal residual stress at the weldment in a container ship was evaluated using the comprehensive FEA. Based on the results, the predictive equations of mean value and the distribution of transverse residual stress in each location of residual stress were established using dimensional analysis and multiple-regression method. The validation of predictive equations was verified by comparing with measured results by XRD in the actual weldment of the ship.

  • PDF

Study on the Optimization of Pulse GTAW Process for Diaphragm with Thin Thickness (극박 다이아프램의 펄스 GTAW 공정 최적화에 관한 연구)

  • Park, Hyoung-Jin;Hwang, In-Sung;Kang, Mun-Jin;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.26 no.1
    • /
    • pp.63-68
    • /
    • 2008
  • This paper has aimed to prevent excessive heat input by controlling arc distribution and heat input capacity with pulse GTAW in order to improve weld quality in 0.08mm pressure gauge diaphragm and flange welding parts. A design of experiment was designed using Box-Behnken method to optimize a welding process. The pulse GTAW parameters such as pulse current, base current, pulse duty, frequency and welding speed were set to input variables while hydraulic pressure that represents welding characteristics in diaphragm and flange joint were set to output variables. Based on the test result, a second regression equation was obtained between input and output variables and turned out significant. Besides, an influence of parameters has been confirmed through response surface analysis using the second-order regression equation and optimum welding condition was obtained through a grid-search method. The optimum welding condition was set to pulse current 84.4(A), base current 29.6(A), pulse duty 58.8(%), frequency 10(%), and welding speed 596(mm/min). Then, decent bead shape was acquired with no excessive heat input under the $2.3kgf/cm^2$ of hydrostatic pressure.

Fluid Flow and Heat Transfer Characteristics around a Surface-Mounted Module Cooled by Forced Air Flow by Piezoelectric Cooling Fan (압전세라믹 냉각팬에 의한 강제 공랭 모듈 주위의 유체유동과 열전달 특성)

  • Park, G.J.;Park, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.272-277
    • /
    • 2003
  • This paper reports the fluid flow and heat transfer around a module cooled by forced air flow generated by a piezoelectric(PZT) cooling fan. A flexible PZT fan with distortion in a fluid transport system of comparatively simple structure which was mounted on a PCB in a parallel-plate channel($450{\times}80{\times}700mm^3$) accelerates surrounding fluid locally. Input voltages of 20-100V and a resonance frequency of 23Hz were used to vibrate the cooling fan. Input power to the module was 4W. The cooling effect using a PZT fan was larger than that of free convection. Fluid flow around the module were visualized by using PIV system. The temperature distribution around heated module were visualized by using liquid crystal film(LCF). We found that the flow type was y-shaped and the cooling effect was increased by the wake generated by a piezoelectric cooling fan.

  • PDF

Deformation by line heating for thin plate (박판 곡직을 위한 선 가열 시 변형 특성에 관한 연구)

  • Park, Jung-Gu;Jang, Gyeong-Bok;Jo, Si-Hun;Jang, Tae-Won
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.282-284
    • /
    • 2005
  • The line heating methods is very widely employed to correct deformation of thin plate structures. In this study, evaluation was carried out on the temperature distribution of line heating methods using FEA and practical experiments. In FEA, heat input model was established using Tsuji's double Gaussian heat input mode. This model was verified by comparing with experimental data. Thermo elasto-plastic analysis was performed using commercial FE code, MSC/MARC. Transverse shrinkage and angular distortion were measured using 3D measuring apparatus. Based on these results, a simplified analysis method is applied by using equivalent loading method.

  • PDF

Numerical analysis to determine fire suppression time for multiple water mist nozzles in a large fire test compartment

  • Ha, Gaghyeon;Shin, Weon Gyu;Lee, Jaiho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1157-1166
    • /
    • 2021
  • In this study, a numerical sensitivity analysis was performed to determine the fire suppression time for a large number of water mist nozzles in a large fire compartment. Fire simulations were performed using FDS (Fire dynamics simulator) 6.5.2 under the same condition as the test scenario 5 of the International Maritime Organization (IMO) 1165 test protocol. The sensitivities of input parameters including cell size, extinguishing coefficient (EC), droplets per second (DPS), and peak heat release rate (HRR) of fuel were investigated in terms of the normalized HRR and temperature distribution in the compartment. A new method of determining the fire suppression time using FDS simulation was developed, based on the concept of the cut-off time by cut-off value (COV) of the heat release rate per unit volume (HRRPUV) and the cooling time by the HRR cooling time criteria value (CTCV). In addition, a method was developed to determine the average EC value for the simulation input, using the cooling time and cut-off time.

Experimental Study on the Heat Distribution in the Rectangular Mini Channel Heat Exchangers with MPCM Slurry (마이크로 캡슐 잠열재 슬러리를 적용한 미소채널 열교환기의 열분배 성능평가)

  • Jeon, Jong-Ug;Back, Chang-Huyn;Kim, Yong-Chan;Kim, Young-Deug;Choi, Jong-Min
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.645-650
    • /
    • 2006
  • The heat transfer performance and energy transport ability are relatively high due to higher specific heat. Therefore, it can be used in fields such as heating, ventilating, air-conditioning, refrigeration and heat exchangers. In this study, liquid-cooling heat exchangers were designed and tested by varying geometry and operating conditions. In addition, liquid-cooling heat exchangers were tested to provide performance data for MPCM slurry. The liquid-cooling heat exchangers had twelve rectangular channels with flow paths of 1, 2, 4 and 12. Silicon rubber heaters were used to control the heat load to the heat exchanger. Heat input ranged from 293 to 800 W, and inlet temperatures of working fluid varied from 15S to $27^{\circ}C$. The standard deviation of surface temperature was strongly affected by the coolant of MPCM Slurry, All MPCM-cooling heat exchangers showed higher cooling performance than the water-cooling heat exchanger except one path channel heat exchanger.

  • PDF

Temperature Distribution of an Air-Cooled PCB Mounted with Finned and Finnless Modules (휜이 부착된 강제 공랭 모듈을 실장한 기판의 온도분포에 관한 연구)

  • Shin, D.J.;Park, S.H.;Lee, I.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.624-629
    • /
    • 2001
  • An experimental study was performed to investigate adiabatic wall temperature and heat transfer coefficient around on a module with longitudinal fin heat sink cooled by forced air flow. In the first method, inlet air flow(1-7m/s) and input power(3-5W) was varied after a heated module were placed on an adiabatic floor($320{\times}550{\times}1mm^{3}$). An adiabatic wall temperature was determinated to use liquid crystal film(LCF). In the second method to determinate heat transfer coefficient, inlet air flow(1-7m/s) and the heat flux of rubber heater($0.031-0.062\;W/cm^{2}$) was varied after an adiabatic module was placed on rubber heater covering up an adiabatic floor. In addition, surface oil-film visualization were performed to characterize the macroscopic flow-field around a module.

  • PDF

Analysis of Heat Generation Induced by Electron Impact in X-Ray Tube Using FEM and Monte Carlo Method (유한요소법과 몬테카를로법을 이용한 X선 튜브에서 전자빔 충격에 의한 열 발생 해석)

  • Kim, Heungbae;Yoo, Tae Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.387-394
    • /
    • 2015
  • We analyze heat generation as well as temperature distribution induced by accelerated electron impact on a target in a closed x-ray tube. For the sake of accuracy, we use Monte carlo analysis. This method gives accurate energy deposit in a medium with additional information such as secondary and backscattered electron as well as their paths. A Tungsten coated layer is divided by small rectangular cell which accumulate energy loss of primary electron beam. The cells and their accumulated energy datum are used for the input of finite element analysis. The Maximum temperature rising and temperature distribution were analyzed by transient heat analysis. Some temperature parameters such as target size and coating thickness were varied to investigate temperature sensitivity. Temperatures were compared each other to find primary variable that affect temperature rising on the x-ray target. The results will be helpful in development highresolution x-ray tube and related industries.

A Study on Estimation of Cooling Load for Effective Control of Ice Thermal Storage System (빙축열 시스템의 효율적인 제어를 위한 냉방부하 예측에 관한 연구)

  • Yoo, Seong-Yeon;Han, Kyu-Hyun;Lee, Je-Myo;Han, Seung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.128-136
    • /
    • 2008
  • It is necessary to estimate the cooling load of the next day for effective control of ice thermal storage system. In this paper, new methodology is proposed to estimate the cooling load using design parameters of building and predicted weather data. Only six input parameters such as sensible heat coefficient and constant, latent heat coefficient and constant, maximum and minimum temperature are necessary to obtain hourly distribution of cooling load for the next day. Two benchmarking buildings(hospital and research institute) are selected to validate the performance of the proposed method, and the estimated cooling loads in hourly and daily bases are calculated and compared with the measured data for E hospital. The estimated results show fairly good agreement with the measured data for both buildings.