• 제목/요약/키워드: Heat flow resistance

검색결과 300건 처리시간 0.026초

수평평판의 막응축에서 전도 열저항의 영향 (The Effect of Heat Conduction resistance on Laminar Film Condensation along a Horizontal Plate)

  • 이억수
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.183-188
    • /
    • 2005
  • The effect of heat conduction resistance on laminar film condensation of the pure saturated vapor in forced flow over a flat plate has been investigated as boundary layer solutions. A efficient numerical methods for water are proposed for its solution. The momentum and energy balance equations are reduced to a nonlinear system of ordinary differential equations with four parameters: the Prandtl number, Pr, Modified Jacob number, $Ja^{\ast}/Pr$, defined by an overall temperature difference, a property ratio $\sqrt{P_l{\mu}_l/P_v{\mu}_v}$ and the conjugate parameter ${\zeta}$. The similarity and simplified solutions obtained reveal the effects of the conjugate parameter.

  • PDF

CVD법에 의한 강의 TiC 피복에 관하여 (Study on the Tic Coating of Steel by C.V.D. Process)

  • 강국해;최진일;영동영
    • 한국표면공학회지
    • /
    • 제15권4호
    • /
    • pp.208-217
    • /
    • 1982
  • To study the effect of TiC coating on weight change, microhardness, wear and heat - resistance of TiC layer, chemical vapour deposition on the various substrates has been carried out with the gaseous mixture of TiCl4, toluene, and H2 in the temperature range of 900 - 1000$^{\circ}C$. The results obtained are as follows ; (1) There is a limited value of carrier and reductant H2 gas flow rate, above which deteriorate effect on the TiC depoition arises (2) Increased thickness of TiC layer was resulted with increasing temperature and time. Better deposition was obtained with stainless steels and the best results were introduced by cobalt coating of substrates. (3) Wear resistance of the TiC coated specimen improved markedly. Heat resistivity of the coated steel showed excellent result, whereas the coated stainless Steels were infer-ior to the substrate.

  • PDF

석유 팬 히터의 연소실 주변 열전달 특성 (Heat transfer characteristics around a circular combustion chamber of kerosene fan heater)

  • 김장권
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.551-561
    • /
    • 1998
  • This paper was studied to understand the characteristics of heat transfer coefficients and surface temperature distributions around a circular combustion chamber within the heat-intercept duct of kerosene fan heater. The experiment was carried out in the heat-intercept duct of kerosene fan heater attached to the blow-down-type subsonic wind tunnel with a test section of 240 mm * 240 mm * 1200 mm. The purpose of this paper was to obtain the basic data related with normal combustion for new design from conventional kerosene fan heater, and to investigate the effect of surface temperature, local and mean heat transfer coefficients versus flow-rate of convection axial fan according to the variations of heat release conditions from kerosene fan heater during normal combustion. Consequently it was found that (i) the revolution of convection axial fan during combustion had a smaller value than that of non-combustion because of the thermal resistance due to the high temperature in the heat-intercept duct, (ii) the pressure ratio P$_{2}$/P$_{1}$ had a comparatively constant value of 0.844 according to the revolution increase of turbo fan and the heating performance of kerosene fan heater had a range of 1,494 ~ 3,852 kcal/hr, (iii) the local heat transfer coefficient around a circular combustion chamber had a comparatively larger scale in the range of 315 deg. < .theta. < 45 deg. than that in the range of 90 deg. < .theta. < 270 deg. as a result of heat transfer difference between front and back of a circular combustion chamber, and (iv) the mean heat transfer coefficient around a circular combustion chamber increased linearly like a H$_{m}$=95.196Q+104.019 in condition of high heat release according to the increase of flow-rate of axial fan.n.

세척이 가능한 원통 코일형 열교환기의 파울링 특성에 관한 연구 (Fouling Characteristics of Washable Shell and Coil Heat Exchanger)

  • 황준현;나병철;오세기;구경민;이재근;안영철
    • 설비공학논문집
    • /
    • 제27권2호
    • /
    • pp.69-74
    • /
    • 2015
  • In this work, we studied the shell and helically coiled tube heat exchangers. Shell and coil heat exchangers with different rate of water flow and plate heat exchanger with same capacity were tested for condensing conditions. We proposed design guide using modified Wilson plot method. We compared fouling characteristics between shell and coil heat exchanger and plate heat exchanger, when they were washed and were not washed. The shell and coil heat exchanger showed 120% of higher saturated fouling resistance value and 4% of better heat transfer ratio than the plate heat exchanger.

유동 저항에 따른 원심홴의 선정 (Selection of Centrifugal Fan for Flows with Down-Stream Resistance)

  • 김재원;장동희;안은영
    • 한국유체기계학회 논문집
    • /
    • 제9권3호
    • /
    • pp.44-48
    • /
    • 2006
  • Comprehensive experimental works are carried out for the optimal design of a centrifugal blower adopted in an indoor unit of an air-conditioner. The models for consideration are typical multi-blade turbo blower and limit loaded one, respectively. The main interest lies on the fluid dynamics performance when the blower Is installed in the practical system. The methodologies are an experimental estimations with a wind tunnel for blower performance and PIV measurement for the detail flow information. A centrifugal blower with limit loaded fan shows pronounced performances in terms of the flow rate and static pressure rise and the reason is explained by the precise measurement of the flows between blades using PIV. Consequently, it is found that the blower is proper for the flows with a resistance in down stream such as a heat exchanger.

과도 사고 시 Au/YBCO 박막 곡선의 저항 거동 (Resistance Development in Au/YBCO Thin Film Meander Lines under High-Power Fault Conditions)

  • 김혜림;심정욱;최인지;임성우;현옥배
    • Progress in Superconductivity
    • /
    • 제8권1호
    • /
    • pp.81-86
    • /
    • 2006
  • We investigated resistance development in $Au/YBa_2Cu_3O_7(YBCO)$ thin film meander lines during high-power faults. The meander lines were fabricated by patterning 300 nm thick YBCO films coated with 200 nm thick gold layers into meander lines. A gold film grown on the back side of the substrate was also patterned into a meander line. The front meander line was connected to a high-power fault-test circuit and the back line to a DC power supply. Resistance of both lines was measured during the fault. They were immersed in liquid nitrogen during the experiment. Behavior of the resistance development prior to quench completion could be understood better by comparing resistance of the front meander lines with that of the back. Quench completion point could be determined clearly. Resistance and temperature at the quench completion point were not affected by applied field strength. The experimental results were analyzed quantitatively with the concept of heat transfer within the meander lines/substrate and to the surrounding liquid nitrogen. In analysis, the fault period was divided into three regions: flux-flow region, region prior to quench completion, and region after quench completion. Resistance was calculated for each region, reflecting the observation for quench completion. The calculated resistance in three regions was joined seamlessly and agreed well with data.

  • PDF

중첩된 구리 판재의 전기저항가열 표면마찰 점용접(RSFSW)에 관한 연구 (A Study on Electric Resistance Heated Surface Friction Spot Welding Process of Overlapped Copper Sheets)

  • 순샤오광;진인태
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.93-100
    • /
    • 2021
  • Copper sheets has been used widely in electric and electron industry fields because they have good electric and heat conduction property of the material. And, in order to bond copper material, a kind of soldering process is generally used. But, because it is difficult to bond by soldering between overlapped thin copper sheets, so, another kind of brazing bonding process can be used in that case. But, because the brazing process needs wide bonding area, it needs heat treatment process in electric furnace. Generally, for spot welding of sheets, a conventional electric Resistance Spot Welding process(RSW) has been used, it has welding characteristics using contact resistance heating induced by electric current flow between sheets. But, because copper sheets has the low electric resistance, it is difficult to weld by electric resistance spot welding. So, in this study, an electric Resistance heated Surface Friction Spot Welding process(RSFSW) is suggested and is testified for the spot welding ability of thin copper sheets. It is known from the experimental results and simulation that the suggested spot welding process will be able to improve the spot welding ability of copper sheets by the combined three kinds of heating generated by surface friction by rotating pin, and conducted from heated steel electrode, and generated by contact resistance of electricity.

화재 온도를 받는 고인성.고내화성 시멘트 복합체의 거동 (Behavior of Fire Resistance Engineered Cementitious Composites(FR-ECC) under Fire Temperature)

  • 한병찬;권영진;김재환
    • 콘크리트학회논문집
    • /
    • 제19권2호
    • /
    • pp.189-197
    • /
    • 2007
  • 터널 라이닝은 대형 화재 등과 같은 고온에 노출될 경우, 폭렬이 발생하고 이로 인해 급격한 온도 전달 및 내력 저하로 구조체 붕괴의 원인이 될 수 있다는 것이 여러 사례를 통해 보고되고 있다. 본 연구는 터널라이닝의 내화뿜칠 재료로 매우 적합할 것으로 판단되는 고인성 고내화성 시멘트 복합체(FR-ECC)를 개발하고 이의 역학적 특성 및 내화 성능을 평가하고자 하였다. 이를 위하여 FR-ECC에 있어서의 배합 요인을 실험 변수로 내화 시험을 실시하였으며 비정상 온도 분포 해석 기법(nonlinear transient heat flow analysis)을 이용하여 이를 해석적으로 묘사 검증되었다. 또한, 실험 결과를 통해 검증된 해석 기법을 이용하여 터널라이닝에 대한 열전달 해석을 수행하여 FR-ECC를 내화 2차 라이닝재로 이용하는 경우의 거동 특성을 분석하였다. 실험 결과 내화 성능을 향상시키기 위한 FR-ECC의 최적 배합은 PVA 섬유 또는 PP 섬유 혼입률 $V_f=2.0%$, 다공성 세라믹재 혼입률 $V_C=3.6%$, 공기량 $V_A=15%$로 나타났으며, 검증된 비정상 온도 분포 해석 기법을 이용하여 기존 터널에 40mm FR-ECC를 추가 라이닝 한 경우에 대한 해석 결과, 콘크리트 및 철근의 온도 분포가 모두 $350^{\circ}C$ 이내에서 제어되어 터널 내 콘크리트 및 철근에 대한 화재 피해를 방지할 수 있을 것으로 판단되었다.

사각형 전극에서의 열유동 해석 (Simulation of heat flow for rectangular electrodes)

  • 신윤섭;박수웅;나석주
    • Journal of Welding and Joining
    • /
    • 제8권1호
    • /
    • pp.62-69
    • /
    • 1990
  • Being focused on the recent studies that the fatigue strength of resistance spot weldmentes can be improved by using ellipsoidal weld nuggets, the voltage and temperature distribution in resistance spot weldments were simulated for the various rectangular electrodes which had the different aspect ratio of the contact area. Because the electrode shape was not axi-symmetric, the solution domain for simulation should be three dimensional. A series of experiments were carred out to verify the analytically obtained temperature distribution in the weldment. From the calculational and experimental results, it could be revealed that the nugget took the form of ellipsoid, while both results showed a considerable discrepancy for the high aspect ratio.

  • PDF

금속기판에 유전체 후막을 형성시켜 제조한 2층 층상재료에서 두께 방향의 열전도 특성 (Thermal Properties of Two-Layered Materials Composed of Dielectric Layer on Metallic Substrate along the Thickness Direction)

  • 김종구;정주영;주재훈;박상희;조영래
    • 마이크로전자및패키징학회지
    • /
    • 제23권4호
    • /
    • pp.87-92
    • /
    • 2016
  • 전자소자의 방열모듈에서 두께 방향의 열방출 특성에 대한 중요성이 증가하고 있다. 금속과 금속의 본딩 및 유전체와 금속의 본딩 구조를 갖는 2가지 종류의 2층 층상재료를 제조한 후 두께 방향으로 열확산계수를 측정하였다. 금속(STS439)과 금속(Al6061)으로 이루어진 2층 층상재료에서는 섬광법(LFA)으로 열확산계수를 측정했을 때, 열흐름의 방향을 반대로 변화시켜도 열확산계수의 변화가 없었다. 그런데, 유전체(AlN-Polymer)와 금속(Al6061)의 2층 층상재료에서는 열흐름의 방향을 반대로 인가하였을 때 열확산계수는 17.5% 정도 다르게 나타났다. 유전체와 금속의 단면구조를 갖는 2층 층상재료에서, 금속에서 유전체 방향으로 측정한 열확산계수가 유전체에서 금속 방향으로 측정한 열확산계수에 비해 17.5% 작게 나타난 이유는, 금속내의 전자가 갖고 있던 에너지가 유전체 쪽으로 전달되기 위해서는 계면 주변에서 포논의 에너지 형태로 변환될 때 저항이 생기기 때문이다.