• 제목/요약/키워드: Heat flow characteristic

검색결과 229건 처리시간 0.025초

판형 열교환기의 전열판 개수에 따른 유량 분배 특성에 대한 수치해석 (A NUMERICAL STUDY ON THE CHARACTERISTIC OF FLOW DISTRIBUTION IN THE CHANNEL OF PLATE HEAT EXCHANGER FOR VARIOUS NUMBER OF CHANNELS)

  • 이나리;정재혁;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.129-134
    • /
    • 2009
  • In the present study, the characteristic of flow distribution in the channel of a plate heat exchanger is investigated numerically. In order to accomplish the efficient and fast analyses of the flow characteristics in the channel, a semi-microscopic analysis has been performed using a porous media model. For semi-microscopic analysis using porous media, the flow resistance coefficients are obtained through the result of pressure drop in the experimental data. The results showed that the variation of mass flow rate, geometry and chevron angle strongly depend on the flow distribution in the channel. Particularly, the chevron angle is most important factor for uniform flow distribution.

  • PDF

이중관 열교환기의 유체 유입위치와 회전길이에 따른 유동특성 (Flow Characteristic with Distance of Inlet Port and Rotating Length of Fluid in the Double Heat Exchanger)

  • 이승하;차동안;권오경
    • 동력기계공학회지
    • /
    • 제17권4호
    • /
    • pp.51-57
    • /
    • 2013
  • The length and position of the inlet port on the double tube heat exchanger is analyzed by CFX ver.11 for studying the characteristic of its flow distribution. When the boundary conditions of the inlet temperature and mass flow rate were each $20^{\circ}C$ and 10 ~ 50 kg/min, 3 models that are based on the distance between the inlet port and the center of the heat exchanger(0, 5.025, 10.05 mm) were analyzed to find the uniformity of the flow rate. Based on the flow rate, 4 lengths (23.723, 33.890, 44.057, 57.274 mm) were used to study the flow distribution according to Reynolds Number. The results show that, when the distance from the inlet to the position of the center of the heat exchanger is 10.05 mm and the length is 57.274 mm, the flow distribution is the most unified.

LED 조명등 히트싱크 형상과 배열에 따른 방열특성에 관한 연구 (A Study on the radiant Heat Characteristic According to Type and Array of LED Lighting Heatsink)

  • 장현;서정세;이중섭
    • 한국기계가공학회지
    • /
    • 제12권3호
    • /
    • pp.54-60
    • /
    • 2013
  • Numerical analysis of the radiant heat characteristic around heatsink according to arrangement and shape of fin on 60W-LED lamp is conducted in this study. In the case of top blow blowing from upper side on LED lamp, there is just little difference in cooling characteristics according to the height of fin. On the other hand, the fin arranged side by side has the advantage of heat transfer enhancement by comparing with zig-zag type because it leads to more loss of flow. In case of making fin round to increase the amount of heat transfer, designing arrangement with the minimized loss of flow has the advantage of characteristic.

착상을 수반한 멀티 가변속 열펌프의 동특성 (A Dynamic Characteristic of the Multi-Inverter Heat Pump with Frosting)

  • 박병덕;이주동;;황일남;장세동;황정하
    • 설비공학논문집
    • /
    • 제15권5호
    • /
    • pp.337-345
    • /
    • 2003
  • In the case of heat exchangers operating under frosting condition, the growth of frost layer causes the heat exchanger to increase the thermal resistance and pressure loss of the air flow. In this paper, a transient characteristic prediction model of the heat transfer for multi inverter heat pump with frosting on its surface was presented taking into account the change of the fin efficiency due to the growth of the frost layer. In this dynamic simulation program, which was peformed for a basic air conditioning system model, such as evaporator, condenser, compressor, linear electronic expansion valve (LEV) and bypass circuit. The theoretical model was driven from the obtained heat transfer coefficient and mass transfer coefficient, independently. And we consider heat transfer performance was only affected by a decrease of the wind flow area. The calculated results were compared with some cases of experiments for frosting conditions.

OPTIMZATION OF A PIN FIN BASED ON THE INCREASING RATE OF HEAT LOSS

  • Kang, Hyung-Suk
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제12권1호
    • /
    • pp.25-32
    • /
    • 2008
  • A pin fin is optimized based on the increasing rate of heat loss by using a two-dimensional analytic method. The optimum heat loss, corresponding optimum thermal resistance and fin length are presented as a function of the fin base thickness, convection characteristic numbers ratio, fin outer radius and ambient convection characteristic number. One of the results shows that both the optimum heat loss and fin length decrease linearly whereas the optimum thermal resistance increases very slightly with increase of the fin base thickness.

  • PDF

점탄성유체의 저항 및 열전달 감소현상과 퇴화의 영향에 관한 연구 (A Study on the Drag and Heat Transfer Reduction Phenomena and Degradation Effects of the Viscoelastic Fluids)

  • 엄정섭;전찬열;유상신
    • 설비공학논문집
    • /
    • 제2권1호
    • /
    • pp.37-48
    • /
    • 1990
  • The drag and heat transfer reduction phenomena and degradation effects of drag reducing polymer solutions which are known as the viscoelastic fluids are investigated experimentally for the turbulent circular tube flows. Two stainless steel tubes are used for the experimental flow loops. Aqueous solutions of Polyacrylamide Separan AP-273 with concentrations from 300 to 1000 wppm are used as working fluids. Flow loops are set up to measure the friction factors and heat transfer coefficients of test tubes in the once-through system and the recirculating flow system. Test tubes are heated by power supply directly to apply constant heat flux boundary conditions on the wall. Capillary tube viscometer and falling ball viscometer are used to measure the viscous characteristics of fluids and the characteristic relaxation time of a fluid is determined by the Powell-Eyring model. The order of magnidude of the thermal entrance length of a drag reducing polymer solution is close to the order of magnitude of the laminar entrance length of Newtonian fluids. Dimensionless heat transfer coefficients of the viscoelastic non-Newtonian fluids may be represented as a function of flow behavior index n and newly defined viscoelastic Graetz number. As degradation continues viscosity and the characteristic relaxation time of the testing fluids decrease and heat transfer coefficients increase. The characteristic relaxation time is used to define the Weissenberg number and variations of friction factors and heat transfer coefficients due to degradation are presented in terms of the Weissenberg number.

  • PDF

잔여 지열류량과 대륙지각의 특성 (Residual Heat Flow and Crustal Properties)

  • 한욱
    • 자원환경지질
    • /
    • 제27권4호
    • /
    • pp.397-409
    • /
    • 1994
  • 지각의 두께에 따른 지열류량을 표시한 그림에서 나타나는 산만성은 다른 두개의 구조구를 전제하고 지구 동력학적 과정과 열적 감쇠현상을 적용하면 설명이 분명하게 된다. 높은 지열류량은 지각이 가늘게 확장되어 얇아진 열곡지역뿐만 아니라 트러스트 구조작용으로 지각이 두껍게 되고 지각의 열생산이 많은 조산대 지역의 특징이다. 지질학적 시간이 경과함에 따라서 지각평형작용에 의해 두꺼운 지각은 융기와 침식작용으로 얇게 되며 얇은 지각은 침강과 퇴적작용으로 두껍게 된다. 지열류량은 배경의 맨틀 지열류량과 평형을 이루는 값까지 감소하게 된다.

  • PDF

추진기관 노즐의 열전달 특성에 관한 수치적 연구 (Numerical Study on Heat Transfer Characteristic in Combustor Nozzle)

  • 남궁혁준;한풍규;이경훈;김영수;정해승
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.275-281
    • /
    • 2007
  • 추진기관 노즐은 고온 고압의 연소가스를 화학에너지에서 운동에너지로 변환시켜 추력을 발생시킨다. 따라서 노즐 내부 벽면은 고온 고압의 연소가스에 노출되며, 특히 노즐 목에서는 최대 열하중을 받는 구간으로서 열구조적으로 안정성을 확보한 냉각 시스템 설계가 이루어져야 한다. 본 추진기관의 노즐은 수냉 방식으로서 열전달 효율을 높이기 위해 냉각 채널 구조로 되어 있다. 본 연구에서는 추진기관 노즐을 위한 냉각 채널 구조의 설계형상에 대해 개념 설계 및 유동 해석을 수행하고 공급압력 및 유량 변화에 따른 입/출구 사이의 압력 강하량을 예측하였다. 또한 압력 손실 및 설계 유량 공급을 위한 압력 조건에 대해서도 평가하였다.

  • PDF

미시적/준미시적 방법을 이용한 자동차용 열교환기 해석기법 (A Numerical Process for the Underhood Thermal Management with the Microscopic and Semi-microscopic Heat Transfer Method)

  • 이상혁;김주한;이나리;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.75-79
    • /
    • 2008
  • In this study, the numerical process for analyzing the automotive louver fin heat exchanger was developed with a 3D microscopic and semi-microscopic analysis. In the microscopic analysis, the simulation with the detailed meshes was performed for obtaining the characteristics of the heat exchanger. From this simulation, the numerical correlations of the heat transfer and flow friction were obtained. In the semi-microscopic analysis, the Semi-microscopic Heat Exchanger (SHE) method, which is characterized by a conjugate heat transfer and porous media analysis was used with the numerical correlation from the microscopic analysis. This analysis predicted the flow and heat transfer characteristics of the louver fin heat exchanger in the wind tunnel and vehicle. In the design of the louver fin heat exchanger, this numerical process can predict the performance and characteristic of the louver fin heat exchanger.

  • PDF

자기장이 인가된 영역에서의 층류 충돌제트의 열전달특성 변화에 대한 수치적 연구 (Characteristic study of heat transfer of laminar impinging jet in an aligned magnetic field)

  • 이현구;하만영;윤형식;전호환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1447-1451
    • /
    • 2004
  • The laminar impinging jet thermal fields were investigated with or without magnetic fields. The transient phenomenon from steady to unsteady flow was founded at specific Reynolds number ranges. In unsteady flow region, the magnetic fields make flow stable. So the characteristics of heat transfer at impingement wall are changed

  • PDF