• Title/Summary/Keyword: Heat exchanger method

Search Result 440, Processing Time 0.029 seconds

Study on Experimental and Theroretical performances for a Compact Metallic Heat Exchanger for Fuel Cell Systems (연료전지용 소형 금속 열교환기의 성능에 대한 실험 및 이론적 연구)

  • Yoon, Young-Hwan;Paeng, Jin-Gi
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.9-18
    • /
    • 2011
  • This study assessed the performance of a compact heat exchanger with staggered tube banks for recuperation of high temperature exhaust thermal energy for SOFC fuel cell system. The compact heat exchanger in this study is two pass system which consists of $315{\times}202.5{\times}48.5mm^3$ and 132 tubes of $6.0mm{\Phi}$ for each heat exchanger. From experiments of the 2 pass heat exchanger system, air temperature was increased from $60{\sim}85^{\circ}C$ to $402{\sim}482^{\circ}C$ while gas temperature was decreased from $600^{\circ}C$ to $305{\sim}402^{\circ}C$ according to mass flow rates of 3.9~7.8 g/s. The experimental heat transfer rates of the heat exchanger were compared with CFD numerical solutions with the conventional ${\xi}-NTU$ method. From the comparisons, the following conclusions were obtained. For the heat exchanger system, the relative errors of heat transfer rate by CFD solution were from 7.1 to 27%, and those by ${\xi}-NTU$ method were from 0.6% to 21% compared with experimental data. From the comparisons, it can be said that both of CFD and ${\xi}-NTU$ method almost simulated to experimental data except specific conditions. Pressure drops through air tubes and gas passages were calculated with both of the CFD computation and head loss equations. The differences between them were from 14 to 22%.

An Analysis for Predicting the Thermal Performance of Fin-Tube Heat Exchanger under Frosting Condition (착상시 핀-관 열교환기의 열적 성능 예측을 위한 해석)

  • Lee, T.H.;Lee, K.S.;Kim, W.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.299-306
    • /
    • 1996
  • This work presents an analytical model, so called modified LMTD method, to predict the thermal performance of finned-tube heat exchanger under frosting conditions. In this model, the total heat transfer coefficient and effective thermal conductivity of the frost layer were defined as a function of frost surface temperature. The surface temperature of the frost layer formed on the heat exchanger was calculated through the analysis of the heat and mass transfer process in the air and frost layer. To examine the validity of this analytical model, the computed results from the present model, such as heat transfer rate, frost mass and thickness of frost, were compared with the ones of the expermental work and LMED method.

  • PDF

Study on Single-Phase Heat Transfer, Pressure Drop Characteristics and Performance Prediction Program in the Oblong Shell and Plate Heat Exchanger (Oblong 셀 앤 플레이트 열교환기에서의 단상 열전달, 압력강하 특성 및 성능예측 프로그램 개발에 관한 연구)

  • 권용하;김영수;박재홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.1026-1036
    • /
    • 2004
  • In this study, single-phase heat transfer experiments were conducted with Oblong Shell and Plate heat exchanger using water. An experimental water loop has been developed to measure the single-phase heat transfer coefficient and pressure drop in a vertical Oblong Shell and Plate heat exchanger. Downflow of hot water in one channel receives heat from the cold water upflow of water in the other channel. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the Oblong Shell and Plate heat exchanger remains turbulent. The present data show that the heat transfer coefficient and pressure drop increase with the Reynolds number. Based on the present data, empirical correlations of the heat transfer coefficient and pressure drop in terms of Nusselt number and friction factor were proposed. Also, performance prediction analyses for Oblong Shell and Plate heat exchanger were executed and compared with experiments. $\varepsilon$-NTU method was used in this prediction program. Independent variables are flow rates and inlet temperatures. Compared with experimental data, the accuracy of the program is within the error bounds of $\pm$5% in the heat transfer rate.

A Study on Development of a Plugging Margin Evaluation Method Taking Into Account the Fouling of Shell-and-Tube Heat Exchangers

  • Hwang, Kyeong-Mo;Jin, Tae-Eun;Kim, Kyung-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1934-1941
    • /
    • 2006
  • As the operating time of heat exchangers progresses, fouling caused by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of Korean nuclear power plants have been analyzed in terms of heat transfer rate and overall heat transfer coefficient as a means of heat exchanger management. Except for fouling resulting from the operation of heat exchangers, all the tubes of heat exchangers have been replaced when the number of plugged tubes exceeded the plugging criteria based on design performance sheet. This paper describes a plugging margin evaluation method taking into account the fouling of shell-and-tube heat exchangers. The method can evaluate thermal performance, estimate future fouling variation, and consider current fouling level in the calculation of plugging margin. To identify the effectiveness of the developed method, fouling and plugging margin evaluations were performed at a component cooling heat exchanger in a Korean nuclear power plant.

Numerical Analysis on the Condensation Heat Transfer and Pressure Drop Characteristics of the Horizontal Tubes of Modular Shell and Tube-Bundle Heat Exchanger (모듈형 쉘-관군 열교환기에서의 응축열전달 및 압력강하 특성에 관한 수치해석)

  • Ko, Seung-Hwan;Park, Hyung-Gyu;Park, Byung-Kyu;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.191-198
    • /
    • 2001
  • A numerical analysis of the heat and mass transfer and pressure drop characteristics in modular shell and tube bundle heat exchanger was carried out. Finite Concept Method based on FVM and $k-\varepsilon$ turbulent model were used for this analysis. Condensation heat transfer enhanced total heat transfer rate $4\sim8%$ higher than that of dry heat exchanger. With increasing humid air inlet velocity, temperature and relative humidity, and with decreasing heat exchanger aspect ratio and cooling water velocity, total heat and mass transfer rate could be increased. Cooling water inlet velocity had little effect on total heat transfer.

  • PDF

Development of Performance Analysis Model of $CO_2$ Heat Pump Heat Exchanger ($CO_2$ 히트펌프 열교환기의 성능 해석 모델 개발)

  • Kim, Min-Seok;Chang, Young-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.651-656
    • /
    • 2006
  • A performance analysis model has been developed for fin-tube type heat exchanger for $CO_2$ heat pump. The model uses the tube-by-tube method Because air-side thermal resistance has a great portion among total thermal resistances, it is important to understand air-side heat transfer characteristics. The air-side heat transfer correlation has been proposed from experiments using water. The developed model was confirmed by experimental results and can be used for the performance analysis of heat exchanger.

  • PDF

Performance Analysis of Moving Bed Heat Exchanger of Solid Particles in a Vertical Pipe (고체입자 이동층을 이용한 수직 전열관 열교환기의 성능해석)

  • Park, Sang-Il;Choe, Gyeong-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2916-2923
    • /
    • 1996
  • A numerical analysis of the moving bed heat exchanger of solid particles inside the vertical pipe was performed using finite difference method. Also, the theoretical solutions were obtained for comparison when the wall heat flux or the wall temperature was assumed constant. The comparison showed that their results agreed well each other. The moving bed heat exchanger was classified as countercurrent-flow, parallel-flow, and cross-flow types according to the gas flow direction. For each type, the thermal efficiency of heat exchanger was calculated as a function of non-dimensional parameters such as the characteristic length of heat exchanger, Biot number and the ratio of thermal capacities of gas and solid particles.

Experimental Study on Heat Transfer and Pressure Drop Characteristics for Single-Phase Flow in Plate and Shell Heat Exchangers. (Plate and Shell 열교환기의 단상유동 열전달 및 압력강하 특성에 관한 실험적 연구)

  • 서무교;김영수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.422-429
    • /
    • 2000
  • Plate and shell heat exchanger(P&SHE) is widely applied as evaporators or condensers in the refrigeration and air conditioning systems for their high efficiency and compactness. In order to set up the database for the design of the P&SHE, heat transfer and pressure drop characteristics for single phase flow of water in a plate & shell heat exchanger are experimentally investigated in this study. Single phase heat transfer coefficients were measured for turbulent water flow in a plate and shell heat exchangers by Wilson plot method. The shell side heat transfer resistance was varied and the overall heat transfer coefficients were measured. The single-phase heat transfer coefficients in a plate side were obtained by Wilson plot method. Single-phase heat transfer correlations based on projected heat transfer area and friction factor correlations have been proposed for single phase flow in a plate and shell heat exchanger.

  • PDF

Thermal Diffusivity Measurement of Backfilling Materials for Horizontal Ground Heat Exchanger Using Dual-Probe Method (이중탐침법을 이용한 수평형 지중열교환기 뒤채움재의 열확산계수 측정)

  • Sohn, Byong-Hu;Choi, Hang-Seok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.51-59
    • /
    • 2011
  • Storage and transfer heat in soils are governed by the soil thermal properties and these properties are therefore needed in many engineering applications, including horizontal ground heat exchanger for ground-coupled heat pumps. This paper presents the measured results of the thermal diffusivity of soils(silica, quartzite, limestone, sandstone, and masonry soils) used for the trench backfilling materials of the horizontal ground heat exchanger. To assess this thermal property, we (i) measure the soil thermal conductivities and volumetric heat capacities using dual-probe method and (ii) compare the estimates from the de Vries method of summing the heat capacities of the soil constituents. The results show that the thermal diffusivity tends to increase as dry soil begins to wet, but it approaches a constant value or even decreases as the soil continues to wet. Measurements made by using the dual-probe method agreed well with independent estimates obtained using the single-probe method.

Optimal synthesis and design of heat transfer enhancement on heat exchanger networks and its application

  • Huang, Zhao-qing
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.376-379
    • /
    • 1996
  • Synthesis for qualitative analysis in connection with quantitative analysis from the pinch design method, EVOP and Operations Research is proposed for the optimal synthesis of heat exchanger networks, that is through of the transportation model of the linear programming for synthesizing chemical processing systems, to determine the location of pinch points, the stream matches and the corresponding heat flowrate exchanged at each match. In the second place, according to the optimization, the optimal design of heat transfer enhancement is carried on a fixed optimum heat exchanger network structure, in which this design determines optimal operational parameters and the chosen type of heat exchangers as well. Finally, the method of this paper is applied to the study of the optimal synthetic design of heat exchanger network of constant-decompress distillation plants.

  • PDF