• Title/Summary/Keyword: Heat exchanger method

Search Result 439, Processing Time 0.032 seconds

Comparison of Heat Transfer and Pressure Drop Characteristics of Heat Exchangers Having Plain Fins Under Dry and Wet Conditions

  • Kim Nae-Hyun;Sin Tae-Ryong;Lee Eung-Ryul
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.3
    • /
    • pp.128-137
    • /
    • 2005
  • In this study, dry and wet surface pressure drop and heat transfer characteristics of heat exchangers having plain fins were investigated. Nine samples having different fin pitches and rows were tested. The wet surface heat transfer coefficient was reduced from experimental data using enthalpy-potential method. The wet surface heat transfer coefficients were approximately equal to the dry surface values except for one row configuration. For one row configuration, the wet surface heat transfer coefficients were approximately $30\%$ lower than the dry surface values. For the pressure drop, the wet surface yielded approximately $30\%$ higher values compared with the dry surface counterpart. Data were compared with existing correlations.

Heat Transfer and Pressure Drop Characteristics of Heat Exchangers Having Plain Fins Under Dry and Wet Conditions (평판휜 열 교환기의 건표면, 습표면 열전달 및 압력손실에 관한 연구)

  • 민창근;조진표;오왕규;김내현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.3
    • /
    • pp.218-229
    • /
    • 2004
  • In this study, dry and wet surface pressure drop and heat transfer characteristics of heat exchangers having plain fins were investigated. Nine samples having different fin pitches and rows were tested. The wet surface heat transfer coefficient was reduced from experimental data using enthalpy-potential method. The wet surface heat transfer coefficients were approximately equal to the dry surface values except for one row configuration. For one row configuration, the wet surface heat transfer coefficients were approximately 30% lower than the dry surface values. For the pressure drop, the wet surface yielded approximately 30% higher values compared with the dry surface counterpart. Data were compared with existing correlations.

Characteristic of Cabin Temperature According to Thermal Load Condition of Heat Pump for Electric Vehicle (전기자동차용 히트펌프의 열 부하 조건에 따른 캐빈온도 특성)

  • Park, Ji Soo;Han, Jae Young;Kim, Sung-Soo;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • The Positive Temperature Coefficient (PTC) is used for cabin air heating of a battery electric vehicle, which is different from conventional vehicles. Since the PTC heater consumes a large quantity of power in a parasitic manner, many valuable studies have been reported in the field of alternative heat pumps. In this study, a model for an R134a heat pump taking into account the thermal environment of the cabin was developed for a MATLAB/SIMULINK(R) platform. Component and cabin models are validated with reference values. Results show that the heat pump is more competitive for parasitic power consumption over all ambient temperature conditions. Additionally, the method of waste heat recovery to overcome disadvantages when temperatures are below zero is applied to efficiently operate the heat pump.

A study on the development of MVR desalination plant and its performance analysis (MVR해수담수화플랜트의 개발 및 성능에 관한 연구)

  • Kim, Yeongmin;Chun, Wongee;Kim, Dongkook
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.59-65
    • /
    • 2016
  • MVR evaporation is a method of pressurizing the evaporating steam to raise its temperature with an electric compressor instead of burning fuel and reusing the heat source through the embraced heat exchanger to minimize energy use. MVR desalination system with wind power uses varying wind power instead of stable electricity and can flexibly control the volume of fresh water production. The present study introduces the design, construction and operation of a MVR desalination system of 30ton/day capacity. Experimental results, MVR compression ratio is higher than 1.5, temperature difference of the main heat exchanger is $5{\sim}7^{\circ}C$. This value shows the same performance as the designed value.

In-Situ Performance Analysis of Centrifugal Chiller According to Varying Conditions of Chilled and Cooling Water (현장에서 운전중인 터보냉동기의 냉수와 냉각수 조건 변화에 따른 성능 해석)

  • Kim, Yeong-Il;Jang, Yeong-Su;Sin, Yeong-Gi;Baek, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.482-490
    • /
    • 2002
  • This paper presents modelling and analyzing method of centrifugal chiller which has a rated capacity of 200 RT(703 kW) through on-site performance test. Field performance data of a chiller installed in a research building of KIST have been collected. Simple models were developed for predicting the heat exchanger and system performances by regression of chiller operation data during 5 days in August. The models proposed here account for the effect of variations of cooling capacity, temperatures and flew rates of secondary fluids. The proposed models can predict the actual performance data from June to September within $\pm$ 5% error. The COP of centrifugal chiller are estimated under the standard rating conditions and reduced mass flow rates of chilled and cooling water.

Performance Analysis of Refrigeration System Using the CFC-Alternative and Scroll Compressor (CFC-대체냉매와 스크롤압축기를 사용한 냉동시스템 성능해석)

  • Pak, H.Y.;Park, K.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.366-381
    • /
    • 1995
  • A performance analysis of refrigeration system using the HFC-134a and scroll compressor is performed numerically. The refrigeration system mainly consists of various standard components such as heat exchanger, compressor, and expansion device. The model for heat exchanger performance is based on a tube-by-tube method which is analyzed separately by considering the cross-flow heat transfer with the outdoor air flow and pressure drop. Compressor is used the scroll-type compressor which has many merits such as high efficiency, low noise and vibration, and small in size. Short-tube is included as an expansion device. Vapour and liquid line are also considered for the performance analysis of refrigeration system. Using the modeling of various components of refrigeration system, a performance comparison of CFC-12 and HFC-134a is performed numerically for the various outdoor air temperature and various values of short-tube diameter. As the results of this study, the refrigeration system performance decreases as the outdoor air temperature increases. And the optimum short-tube diameter based on COP is 1.37mm for this system.

  • PDF

Heat Exchanger Optimization using Progressive Quadratic Response Surface Method (순차적 2 차 반응표면법을 이용한 열교환기 최적설계)

  • Park, Kyoung-Woo;Choi, Dong-Hoon;Lee, Kwan-Soo;Kim, Yang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1022-1027
    • /
    • 2004
  • In this study, the shape of plate-fin type heat sink is numerically optimized to acquire the minimum pressure drop under the required temperature rise. To do this, a new sequential approximate optimization (SAO) is proposed and it is integrated with the computational fluid dynamics (CFD). In thermal/fluid systems for constrained nonlinear optimization problems, three fundamental difficulties such as high cost for function evaluations (i.e., pressure drop and thermal resistance), the absence of design sensitivity information, and the occurrence of numerical noise are confronted. To overcome these problems, the progressive quadratic response surface method (PQRSM), which is one of the sequential approximate optimization algorithms, is proposed and the heat sink is optimize by means of the PQRSM.

  • PDF

A Study on Prediction Method of Vehicle Cooling Performance with A/C Condenser (A/C 콘덴서를 포함한 차량냉각 성능예측에 관한 연구)

  • 이상호;박정원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.51-60
    • /
    • 2002
  • An analysis method to predict performance of a vehicle cooling system which is composed of radiator, A/C condenser, cooling fan, and etc. is suggested. Air flow through the heat exchanger system and heat rejection rate which dominate the cooling performance are analyzed. Heat transfer with A/C refrigerant phase change is also considered in the analysis. Some predicted results are compared with experimental data for various operating conditions. This evaluation procedure will be useful for the design of optimal vehicle cooling system.