• Title/Summary/Keyword: Heat exchanger design

Search Result 682, Processing Time 0.026 seconds

Experimental Study on Thermal Characteristics of Heat Exchanger Modules for Multi Burner Boiler - Part Load Test Results - (멀티버너 보일러용 열교환기 모듈 특성 시험 - 부하별 특성 결과 -)

  • Kim, Jong-Jin;Sung, Choi-Kyu;Ki, Ho-Choong;Kang, Sae-Byul
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1025-1030
    • /
    • 2008
  • We develop heat exchanger modules for a multi-burner boiler. The heat exchanger module is kind of a heat recovery steam generator (HRSG). This heat recovery system has 4 heat exchanger modules. The 1st module consists of 27 bare tubes due to high temperature exhaust gas and the others consist of 27 finned tubes. The maximum steam pressure of each module is 10 bar and tested steam pressure is 4 bar. In order to test these heat exchanger modules, we make a 0.5t/h flue tube boiler (LNG, $40\;Nm^3/h$). The test results of 100% boiler load show that heat transfer rate of 1st module is 49.7 Mcal/h which is 34% of total heat transfer rate and that of 2nd module is 82.6 Mcal/h which is 57% of total heat transfer rate. The reason of higher the heat transfer rate of 2nd module than that of 1st module is that the 2nd heat exchanger module has finned tubes instead of bare tube. The boiler load 50% results show that only 2 heat exchanger modules are needed to extract the heat from the flue gas to water. From this result, it is very important of optimum design of the first finned tube among all water tubes.

  • PDF

Development and Research of Thermal Management Equipment for Efficiency Enhancement of PEMFC Systems (PEMFC 시스템 효율 향상을 위한 열 관리 설비 개발 및 연구)

  • JAEHWAN KIM;JISEUNG LEE;INSEAK KANG;HYUNCHUL JU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.205-215
    • /
    • 2024
  • This study introduced a direct contact heat exchanger to enhance the efficiency of polymer electrolyte membrane fuel cells (PEMFCs) systems. According to previous research, 28% of the operating costs of fuel cell systems are attributed to heat exchanger devices, prompting the design of a direct contact heat exchanger to address this issue. Optimal configurations were determined through computational fluid dynamics analysis and experimental device fabrication, and the enhanced heat exchange performance of the heat exchanger was experimentally confirmed. Through this, the contribution of the direct contact heat exchanger to the heat management and efficiency enhancement of PEMFC systems was established.

Evaluation of Air-side Heat Transfer and Friction Characteristics on Design Conditions of Evaporator (증발기의 설계조건에서 공기측 열전달계수 및 압력강하 산출)

  • 김창덕;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.1007-1017
    • /
    • 2003
  • An experimental study on the air-side pressure drop and heat transfer coefficient of slit fin-tube heat exchanger has been carried out. The data reduction methodology for air-side heat transfer coefficients in the literature is not based on a consistent approach. This paper focuses on new method of data reduction to obtain the air-side performance of fin-tube heat exchanger using R22 and recommends standard procedures for dry and wet surface heat transfer estimation in fin-tube heat exchanger having refrigerant on the tube-side. Results are presented as plots of friction f-factor and Colburn j -factor against Reynolds number based on the fin collar outside diameter and compared with previous studies. The data covers a range of refrigerant mass fluxes of 150∼250 kg/$m^2$s with air flows at velocity ranges from 0.3 m/s to 0.8 m/s.

Evaluation of Air-side Heat Transfer and Friction Characteristics on Design Conditions of Condenser (응축기의 설계조건에서 공기측 열전달계수 및 압력강하 산출)

  • 김창덕;전창덕;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.3
    • /
    • pp.220-229
    • /
    • 2003
  • An experimental study on the air-side pressure drop and heat transfer coefficient of slit fin-tube heat exchanger has been carried out. The data reduction methodology for air-side heat transfer coefficients in the literature is not based on a consistent approach. This paper focuses on new method of data reduction to obtain the air-side performance of fin-tube heat exchanger using R22 and recommends standard procedures for dry surface heat transfer estimation in fin-tube heat exchanger having refrigerant on the tube-side. Results are presented as plots of friction f-factor and Colburn j -factor against Reynolds number based on the fin collar outside diameter and compared with previous studies. The data covers a range of refrigerant mass fluxes of 150~250 kg/$m^2$s with air flows at velocity ranges from 0.6 m/s to 1.6 m/s.

A Study on the Performance and Flow Distribution of Fresh Water Generator with Plate Heat Exchanger

  • Jin, Zhen-Hua;Kim, Pil-Hwan;Lee, Gyeong-Hwan;Choi, Soon-Ho;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.611-617
    • /
    • 2008
  • Nowadays Plate Heat Exchanger (PHE) is widely used in different industries such as chemical, food and pharmaceutical process and refrigeration due to the efficient heat transfer performance, extreme compact design and efficient use of the construction material. In present study, discussed main conception of plate heat exchanger and applied in vacuum. PHE and aimed apply in the fresh water generator which installed in ship to desalinate seawater to fresh water use heat from engines. The experiment is proceeded to investigate the heat transfer between cold and hot fluid stream at different flow rate and supply temperature of hot fluid. Generated fresh water as outcome of the system. PHE is an important part of a condensing or evaporating system. One of common assumptions in basic heat exchanger design theory is that fluid is to be distributed uniformly at the inlet of each fluid side and throughout the core. However, in practice, flow mal-distribution is more common and can significantly reduce the heat exchanger performance. The flow and heat transfer are simulated by the k-$\varepsilon$ standard turbulence model. Moreover, the simulation contacted flow maldistribution in a PHE with 6 channels.

  • PDF

Design of Heat Exchanger for Section 3 of SI Hydrogen Production Process (SI 수소생산 공정 Section 3 열교환기 설계)

  • Kim, Ki-Sub;Park, Byung Heung
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.1
    • /
    • pp.19-22
    • /
    • 2017
  • SI process is one of the most advanced thermochemical water splitting cycles enabling mass production of hydrogen without emitting carbon dioxide when coupled to nuclear heat energy. The highest temperature (close to $1000^{\circ}C$) required in SI process is well matched with the outlet temperature of a coolant circulating a high-temperature gas-cooled reactor at around $950^{\circ}C$. In Section 3, some heat exchangers are included to recover heats from process flows at high temperature. In this work, we designed a heat exchanger based on the $1Nm^3/hr$ $H_2$ production capacity using commercial tools for chemical process design.

Trend Analysis for Basic Design of a Plate and Shell Heat Exchanger (판형쉘열교환기 기본설계를 위한 경향성 분석)

  • Dong-Hyeon Choi;Yoon-Suk Chang;Sun-Yeh Kang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.2
    • /
    • pp.69-76
    • /
    • 2022
  • In order to prepare for a future nuclear market, research for developing floating small modular reactor has been initiated with the aim of differentiating it from large nuclear power plants such as distributed power, heat supply to remote communities and sea water desalination. Depending on the characteristics of the small modular reactor, it is necessary to design a plate and shell heat exchanger that can be manufactured smaller than the U-tube recirculation method. In this study, 12 cases are selected by changing the diameter of the heat plate, the thickness of the device body and the size of the stiffener. Finite element analysis is performed by setting the stress classification lines for the point at which deformation is expected under external pressure conditions for these analysis cases. For the basic design of the plate and shell heat exchanger, the optimal conditions are derived by analyzing the tendency of stress change in the device body and stiffener.

Design Optimization of Dual-Shell and Tube Heat Exchanger for Exhaust Waste Heat Recovery of Gas Heat Pump (GHP 배열회수용 이중 쉘-튜브형 배기가스 열교환기의 설계 최적화)

  • Lee, Jin Woo;Shin, Kwang Ho;Choi, Song;Chung, Baik Young;Kim, Byung Soon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2015
  • In this paper, we performed the design optimization dual-shell and tube heat exchanger on exhaust waste heat recovery for gas heat pump using CFD and RSM. CFD analysis is useful to design the complex structure such as double shell and tube heat exchanger. By computer simulation, engineers can assess the feasibility of the given design factors and change them to get a better design. But if one wishes to perform complex analysis on the simulation, such dual-shell and tube heat exchanger for GHP, the computational time can become overwhelming. CFD is powerful but it takes a lot of time for complex structure. Therefore, the CFD analysis is minimized by the optimization using the RSM method. As a result, the number of baffle and tube are optimized by 6 baffles and 25 tubes for heat transfer and flow friction. And then pressure drop and heat transfer is improved about 12.2%. We confirm the design optimization using CFD and RSM is useful on complex structure of heat exchanger.

The Numerical Study on the Heat Transfer Characteristics of Heat Exchanger for Condensing Gas Boiler (응축형 가스보일러 열교환기의 열전달특성에 관한 수치적 연구)

  • Kim, Seok-Cheol;Geum, Seong-Min;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1853-1860
    • /
    • 2001
  • Characteristics of fluid flow and heat transfer in a tube with disk and annular baffle for heat exchanger of condensing boiler was numerically studied. The STAR-CD code was used to solve the governing equations and the temperature and flow fields were investigated. The interval between tube and annular baffle, height and diameter of baffle were selected as important design parameters, and the effects of these parameters on heat transfer and fluid flow were studied. As a result, in the case of with interval, the pressure was decreased, but heat transfer was increased. Heat transfer was slowly increased as the size of disk and annular baffle were increased and the distance between baffles were decreased. The pressure drop was rapidly changed fur diameter and size of disk and annular baffle. In addition, it was desirable that optimal conditions to design heat exchanger were about B$\_$a/R=0.5, L/R=1.

Closed-Loop Cooling System for High Field Mangets (고자기장용 자석을 위한 밀폐순환형 냉각장치)

  • Choi, Y.S.;Kim, D.L.;Lee, B.S.;Yang, H.S.;Painter, T.A.;Miller, J.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.59-64
    • /
    • 2006
  • A closed-loop cryogenic cooling system for high field magnets is presented. This design is motivated by our recent development of cooling system for 21 tesla Fourier Transform ion Cyclotron Resonance (FT-ICR) superconducting magnets without any replenishment of cryogen. The low temperature superconducting magnets are immersed in a subcooled 1.8 K bath, which is connected hydraulically to the 4.2 K reservoir through a narrow channel. Saturated liquid helium is cooled by Joule-Thomson heat exchanger and flows through the JT valve, isenthalpically dropping its pressure to approximately 1 6 kPa, corresponding saturation temperature of 1.8 K. Helium gas exhausted from pump is now recondensed by two-stage cryocooler located after vapor purify system. The amount of cryogenic Heat loads and required mass flow rate through closed-loop are estimated by a relevant heat transfer analysis, from which dimensions of JT heat exchanger and He II heat exchanger are determined. The detailed design of cryocooler heat exchanger for helium recondensing is performed. The effect of cryogenic loads, especially superfluid heat leak through the gap of weight load relief valve, on the dimensions of cryogenic system is also investigated.