• Title/Summary/Keyword: Heat exchange system

Search Result 331, Processing Time 0.022 seconds

Experimental Study on R-l34a Condensation Beat Transfer Characteristics in Plate and Shell Heat Exchanger (판각형 열교환기내의 R-134a 응축열전달 특성에 관한 실험적 연구)

  • 이기백;박재홍;서무교;이희웅;김영수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.108-116
    • /
    • 2003
  • In this paper, the experimental results of condensation heat transfer were reported for the plate and shell heat exchangers(P&SHE) using R-l34a. An experimental refrigerant loop has been established to measure the condensation heat transfer coefficient of R-l34a in a vertical P&SHE. Two vertical counter flow channels were formed in the P&SHE by three plates of geometry with a corrugated trapezoid shape of a chevron angle of 45$^{\circ}$. Downflow of the condensing R-l34a in one channel releases heat to the cold up flow of water in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality of R-l34a on the measured data were explored in detail. The results indicate that at a higher vapor quality the condensation heat transfer coefficients are significantly higher. Condensation heat transfer coefficients were increased when the refrigerant mass flux was increased. A rise in the average heat flux causes an slight increase in the hr. Finally, at a higher system pressure the hr is found to be lower. Correlation is also provided for the measured heat transfer coefficients in terms of the Nusselt number.

A Study on the Heat Recovery from Boiler Exhaust Gas with Multi-stage Water-fluidized-bed Heat Exchanger (다단 물유동층 열교환기에 의한 보일러 배가스의 폐열 회수 성능에 관한 연구)

  • Kim, Dae-Gi;Park, Sang-Il;Kim, Han-Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1776-1783
    • /
    • 2001
  • Heat recovery from boiler exhaust gas with multi-stage water-fluidized-bed heat exchanger is analyzed in this study. The recovered energy here is not only sensible heat but also latent heat contained in the exhaust gas. In this system direct contact heat transfer occurs while exhaust gas passes through water bed and the thermal energy recovered this way is again delivered to the water circulating through heat exchanging pipes within the bed. Thus the thermal energy of exhaust gas can be recovered as a clean hot water. A computer program developed in this study can predict the heat transfer performance of the system. The results of experiments performed in this study agree well with the calculated ones. The heat and mass transfer coefficients can be fecund through these experiments. The performance increases as the number of stage increases. However at large number of stages the increasing rate becomes very low.

Numerical Analysis of the Effect of Ground Source Heat Pump Systems on the Underground Temperature (지열 시스템의 도입이 지중온도환경에 미치는 영향에 대한 해석적 검토)

  • Nam, Yujin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.427-431
    • /
    • 2013
  • Ground heat pump systems utilize the annually stable underground temperature to supply heat for space heating and cooling. The underground temperature affects not only the underground ecosystem, but also the performance of these systems. However, in spite of the widespread use of these systems, there have been few researches on the effect of the systems on underground temperature. In this research, case studies with numerical simulation have been conducted, in order to estimate the effect of ground heat pump systems on underground temperature. The simulation was coupled with the ground water-ground heat transfer model and the ground surface heat transfer model. In the result, it was found that the underground change depends on the heat transfer from the ground surface, the heat exchange rate, and the heat conductivity of soil.

Study on Hydrogen Gas Pre-cooling Temperature and Heat Exchanger Area of Pre-cooling System for Production of Liquid Hydrogen (액체 수소 생산을 위한 예냉 시스템의 수소 가스 예냉 온도 및 열 교환기 면적에 관한 연구)

  • MIN GWAN BAE;DONG WOO HA;HYUN WOO NOH;SEUNG BIN WOO;KI HEO;YOUNG MIN SEO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.3
    • /
    • pp.290-299
    • /
    • 2024
  • In this study, a theoretical study was conducted on the pre-cooling temperature of hydrogen gas and the heat exchanger area in a small-scale liquefied hydrogen system. The small-scale liquefaction system was built and liquid hydrogen production experiments were performed. In this process, the temperature of precooled hydrogen gas was measure to be about 120 K, and then the possibility of a cause was analyzed through pressure analysis of hydrogen gas and container, and analysis of the amount of liquid hydrogen produced. It was found that some reasonable results were obtained from the theoretical approaches. Based on this theoretical approach, we aim to improve the production of liquid hydrogen by optimizing the heat exchange area according to flow rate.

A Study on Heat Exchange Efficiency of EGR Cooler for Diesel Engine to Meet Euro-5 Emission Regulation (Euro-5 대응 디젤엔진용 EGR 쿨러의 열교환 효율 연구)

  • Lee, Joon;Han, Chang-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.183-188
    • /
    • 2007
  • Recently, diesel engine has been frequently applied to RV, SUV and light duty truck due to the good fuel economy and high thermal efficiency. $NO_x$ and PM, environmental pollution materials are basically produced in diesel combustion process. The most important target in diesel engine research is the development of system to reduce the emissions of $NO_x$ and PM. Cooled EGR system is an effective method for the reduction of $NO_x$ emission and PM emission from a diesel engine and EGR cooler is the key component of the system. This study investigates the EGR cooler of oval gas tubes compared with the EGR cooler of shell & tubes to verify the heat exchange efficiency of cooler by means of engine dynamometer tests, rig performance tests and numerical analyses.

Development of a Catalytic Heat Exchanger (촉매연소 열교환기 개발)

  • Jeong, Nam-Jo;Kang, Sung-Kyu;Seo, Yong-Seog;Cho, Sung-June;Ryou, In-Su
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.63-69
    • /
    • 1999
  • The heat exchanger using the catalytic combustion can be applied to petrochemical processes and to VOC incineration facilities. In this work, the experiment for a new fin typed catalytic heat exchanger was conducted. Catalysts for the heat exchanger were determined by testing their catalytic activities over LPG in a micro-reactor. Based on experimental results of the fin typed catalytic heat exchanger, a small scaled heat exchange system was made to test its feasibility as a reboiler used in petrochemical processes. The results showed that the catalytic heat exchanger could combust off-gases effectively and at the same time could recover completely heat produced by catalytic combustion.

  • PDF

Comparision of Heat Exchanging Performance Depending on Different Arrangement of Heat Exchanging Pipe (II) (열회수장치의 열교환 파이프배치형식별 열교환 성능 비교(II))

  • Suh, Won-Myung;Kang, Jong-Guk;Yoon, Yong-Cheol;Kim, Jung-Sub
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.281-285
    • /
    • 2001
  • This study was carried out to improve the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. Three different units were prepared for the comparison of heat recovery performance; AB-type(control unit) is exactly the same with the typical one fabricated for previous study of analyzing heat recovery performance in greenhouse heating system, other two types(C-type and D-type) modified from the control unit are different in the aspects of airflow direction(U-turn airflow) and pipe arrangement. The results are summarized as follows; 1. In the case of Type-AB, when considering the initial cost and current electricity fee required for system operation, it is expected that one or two years at most would be enough to return the whole cost invested. 2. Type-C and Type-D, basically different with Type-AB in the aspect of airflow pattern, are not sensitive to the change of blower capacity with higher than $25\;m^{3}/min$. Therefore, heat recovery performance was not improved so significantly with the increment of blower capacity. This is assumed to be that air flow resistance in high air capacity reduces the heat exchange rate as well. Never the less, compared with control unit, resultant heat recovery rate in Type-C and Type-D were improved by about 5% and 13%, respectively. 3. Desirable blower capacity for these heat recovery units experimented are expected to be about $25\;m^{3}/min$, and at the proper blower capacity, U-turn airflow units showed better heat recovery performance than control unit. But, without regard to the type of heat recovery unit, it is recommended that comprehensive consideration of system's physical factors such as pipe arrangement density, unit pipe length and pipe thickness, etc., are required for the optimization of heat recovery system in the aspects of not only energy conservation but economic system design.

  • PDF

An Analysis on Thermal Performance and Economic of Heat Recovery Ventilation System Integrated with Window (창호통합형 배열회수 환기시스템의 열성능 및 경제성 평가)

  • Sung, Uk-Joo;Cho, Soo;Song, Kyoo-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.8
    • /
    • pp.646-655
    • /
    • 2012
  • This study is intended to analyze the thermal performance and evaluate the applicability about non-duct type heat recovery ventilation system integrated with window. Eventually, economic analysis of the system is conducted according to building energy saving ratio of it. As results of the thermal performance, the U-factor of the window conducted on the basis of KS F 2278 appears to $1.8W/m^2K$, and the effective heat exchange efficiency of the ventilator conducted on the basis of KS B 6879 appears 49.95% for cooling, 66.89% for heating. In the applicability evaluated by TRNSYS 16, the caes of applying the heat recovery ventilator integrated with window is found to reduce the cooling or heating load by 2.9% or 13.5% than the non-ventilator case. The results of economic analysis taking a side of consumer is verified as the payback is 3 years, and the accumulated earning is 1,408,133 won in terms of '600,000 won/unit' for initial cost, 10 years for useful life of the system.

Effects on Performance of an Internal Heat Exchanger According to Charge Amount and Operating Condition in $CO_2$ Cooling Mode (이산화탄소 냉방운전 시 냉매충전량 및 운전조건에 따라 내부열교환기가 성능에 미치는 영향)

  • Kwak, Myoung-Seok;Cho, Hong-Hyung
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 2012
  • This is an experimental study on the performance characteristics of effective heat pump in the cooling mode using a single-stage compression $CO_2$ cycle with an IHX(internal heat exchanger). The performance of a single-stage compression with IHX was investigated according to charge amount and operating condition. Moreover, the performance characteristic of cooling operating was analyzed with the length of IHX. As a result, the optimum refrigerant charge amount was 2.2 kg. The optimal system COP for compressor frequency of 30, 40, 50, and 60 Hz was 3.493, 3.228, 2.978, and 2.659, respectively. Since the system with IHX can maintain large cooling capacity regardless of operating condition, the system performance doesn't reduce considerably under unfavorable condition. When the compressor frequency was 40 Hz, the COP for a system with IHX length of 3 m and 5 m was 3.361 and 3.51, respectively. By using the IHX into a $CO_2$ cooling system, the performance and reliability improves simultaneously.