• Title/Summary/Keyword: Heat exchange rate

Search Result 182, Processing Time 0.027 seconds

Study on construction method of horizontal ground heat pump system using the building structure (건물구조체를 이용한 수평형 지열시스템의 시공법에 관한 연구)

  • Chae, Ho-Byung;Nam, Yujin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.139-140
    • /
    • 2013
  • Ground source heat pump systems can achieve the energy saving of building and reduce CO2 emission by utilizing stable ground temperature. However, they have many barriers such as high cost of installation, incompletion of design tool, lack of recognition as heating and cooling systems. In order to solve the problems, the building integrated geothermal system (BIGS) developed by several researches which use building foundation as a heat exchanger. In order to establish the optimum design tool of BIGS with the horizontal heat exchanger, the prediction method of ground heat exchange rate developed with numerical simulation model. In this study, the economic analysis for BIGS was conducted based on simulation results and the optimal design method was suggested. As a result, it was found that the case of 32 A, piping space 0.3 m, piping deep 0.5 m and flow rate 9.52 L/min was the best case as 50.1 W/m2 of heat exchange rate. In this case the initial cost was reduced to 115 million won.

  • PDF

Validation of Load Calculation Method for Greenhouse Heating Design and Analysis of the Influence of Infiltration Loss and Ground Heat Exchange (온실 난방부하 산정방법의 검증 및 틈새환기와 지중전열의 영향 분석)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.647-657
    • /
    • 2015
  • To investigate a method for calculation of the heating load for environmental designs of horticultural facilities, measurements of total heating load, infiltration rate, and floor heat flux in a large-scale plastic greenhouse were analyzed comparatively with the calculation results. Effects of ground heat exchange and infiltration loss on the greenhouse heating load were examined. The ranges of the indoor and outdoor temperatures were $13.3{\pm}1.2^{\circ}C$ and $-9.4{\sim}+7.2^{\circ}C$ respectively during the experimental period. It was confirmed that the outdoor temperatures were valid in the range of the design temperatures for the greenhouse heating design in Korea. Average infiltration rate of the experimental greenhouse measured by a gas tracer method was $0.245h^{-1}$. Applying a constant ventilation heat transfer coefficient to the covering area of the greenhouse was found to have a methodological problem in the case of various sizes of greenhouses. Thus, it was considered that the method of using the volume and the infiltration rate of greenhouses was reasonable for the infiltration loss. Floor heat flux measured in the center of the greenhouse tended to increase toward negative slightly according to the differences between indoor and outdoor temperature. By contrast, floor heat flux measured at the side of the greenhouse tended to increase greatly into plus according to the temperature differences. Based on the measured results, a new calculation method for ground heat exchange was developed by adopting the concept of heat loss through the perimeter of greenhouses. The developed method coincided closely with the experimental result. Average transmission heat loss was shown to be directly proportional to the differences between indoor and outdoor temperature, but the average overall heat transfer coefficient tended to decrease. Thus, in calculating the transmission heat loss, the overall heat transfer coefficient must be selected based on design conditions. The overall heat transfer coefficient of the experimental greenhouse averaged $2.73W{\cdot}m^{-2}{\cdot}C^{-1}$, which represents a 60% heat savings rate compared with plastic greenhouses with a single covering. The total heating load included, transmission heat loss of 84.7~95.4%, infiltration loss of 4.4~9.5%, and ground heat exchange of -0.2~+6.3%. The transmission heat loss accounted for larger proportions in groups with low differences between indoor and outdoor temperature, whereas infiltration heat loss played the larger role in groups with high temperature differences. Ground heat exchange could either heighten or lessen the heating load, depending on the difference between indoor and outdoor temperature. Therefore, the selection of a reference temperature difference is important. Since infiltration loss takes on greater importance than ground heat exchange, measures for lessening the infiltration loss are required to conserve energy.

A Study to Calculate Inlet Fluid Temperature of the Borehole Heat Exchanger (BHE) using Modified TOUGHREACT (Modified TOUGHREACT를 이용한 지중 열교환기 내 순환 유체의 온도 분포 추정)

  • Kim, Seong-Kyun;Bae, Gwang-Ok;Lee, Kang-Kun;Shim, Byoung-Ohan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.477-480
    • /
    • 2007
  • Inlet fluid temperature of the BRE in the geothermal heat pump system depends on heat exchange rate between the refrigerant of the heat pump and the leaving fluid from the BRE. Because the outlet fluid temperature of the BHE varies with time, inlet fluid temperature has to vary with time. In this study, the module to calculate inlet fluid temperature is developed, which can consider the time-varying outlet fluid temperature and the heat exchange capacity of the heat pump. It is assumed that heat loss or gain of the leaving fluid from outlet to inlet of the BHE is negligible, except when the fluid contacts with the refrigerant of the heat pump. This module is combined with TOUGHREACT, a widely accepted three-dimensional numerical simulator for heat and water flow and geochemical reactions in geothermal systems and is applied to data analyses of the thermal response test.

  • PDF

Analysis of Heat Exchanging Performance of Heat Recovering Device Attached to Exhaust Gas Duct (열회수장치에 의한 열교환 성능 분석(농업시설))

  • 서원명;강종국;윤용철;김정섭
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.333-339
    • /
    • 2000
  • This study was performed to investigate the performance of heat recovery device attached to exhaust gas funnel connected to combustion chamber of greenhouse heating system. The experiment heat recovery system is mainly consisted of LPG combustion chamber and two heat recovery units; unit-A is attached directly to the exhaust gas funnel, and unit-B is connected with unit-A. Heat recovery performance was evaluated by estimating total energy amount by using enthalpy difference between two measurement points together with mass flow rate of gas and/or air passing through each heat recovery unit depending on 5 different flow rates controlled by voltage meter. The results of this experimental study, such as heat exchange behavior of supply air pipes and exhaust air passages crossing the pipes, pressure drop between inlet and outlet, heat recovery performance of exchange unit, etc., will be used as fundamental data for designing optimum heat recovery device to be used for fuel saving purpose by reducing heat loss amounts mostly wasted outside of greenhouse through funnels.

  • PDF

Performance Comparison of a Welded Plate Heat Exchanger and Shell and Tube Heat Exchanger with Same Heat Transfer Area (동일 전열면적을 갖는 용접식 판형열교환기와 관류형 열교환기의 성능 비교)

  • Ham, Jeonggyun;Kim, Min-Jun;An, Sungkook;Cho, Honghyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.4
    • /
    • pp.46-54
    • /
    • 2019
  • In this study, the performance of a shell and tube heat exchanger (STHE) and welded plate heat exchanger (WPHE) was measured experimentally. The pass numbers of the STHE was changed by 1, 2 and 4. As a result, the WPHE showed 2.1 times higher heat exchange capacity than that of the STHE. In case of pressure drop, the STHE with 1 and 2 pass number has a lower pressure drop than the WPHE, while the STHE with 4 pass presented higher pressure drop than the WPHE. The performance index considering the heat exchange capacity and pump consumption power, showed in oder of STHEPass1 > STHEPass2 > W PHE > STHEPass4 under the same flow rate. Therefore, when the WPHE was designed optimally under same operating condition with STHE, the maintenance fee and space can be reduced effectively by using the WPHE.

Effects of Two Kifferent Kinds of Socks on Physiologrical Responses (2종류의 양말착의행동이 인체생리반응에 미치는 효과)

  • 김희은;권오경
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.2
    • /
    • pp.242-249
    • /
    • 1999
  • The purpose of this study was to investigate two different kinds of socks on physiological responses at an ambient temperature of 35$\pm$1$^{\circ}C$ and relative humidity of 50$\pm$5% Five healthy women wearing normal socks or toes socks participated as the subjects. Rectal temperature skin temperatures sweat rate blood pressure pulse rate and questionnaire wee measured. Rectal temperature skin temperature sweat rate blood pressure pulse rate and questionnaire were measured. Rectal temperature and mean skin temperature were lower after exercise at wearing toes socks . Sweat rate was higher at wearing normal socks and blood pressure and pulse rate were tend to higher at wearing toes socks. Thermal comfort temperature sensation and humidity sensation were better wearing toes socks. Thermal comfort temperature sensation and humidity sensation were better wearing toes socks than wearing normal socks but wearing comfort was better at wearing normal socks. These results will be discussed form the viewpoint of thermoregulation AVA(Arterio venous Anastomosis) and count current heat exchange.

  • PDF

Heat Transfer and Sterilization Characteristics of an ERV Element Made of Hwang-to Paper (황토지로 제작된 전열교환소자의 전열특성 및 항균특성에 관한 연구)

  • Cho, Min-Chul;Oh, Sai-Kee;Ahn, Young-Chull
    • Journal of Power System Engineering
    • /
    • v.21 no.1
    • /
    • pp.50-56
    • /
    • 2017
  • To increase the enthalpy exchange efficiency of ERV elements, the moisture exchange character must be improved. The moisture exchange efficiency depends on material characteristics. The material used for ERV is Hwang-to paper based on Han-ji which is Korean traditional paper. The paper has excellent performance in moisture exchange and heat transfer compared with polymer and other papers. To have an anti bacteria performance and to improve moisture exchange performance of Han-ji, Hwang-to is added to the Han-ji. The enthalpy exchange efficiency of the Hwang-to paper shows 5% greater than that of the conventional paper. In case of Escherichia Coli, the reduction rate of bacteria is 96.6% and in case of Pseudomonas, the reduction rate of bacteria is 97.5%. The ERV element made of Hwang-to paper has a great possibility as an ERV element.

Study on the Development of Heat Recovery Ventilator (폐열회수형 환기장치 개발에 관한 연구)

  • Cho, Dong-Hyun;Lim, Tae-Woo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.19 no.3
    • /
    • pp.383-389
    • /
    • 2007
  • To evaluate the performance of heat exchanger with rotating porous plates, the experimental investigation was carried out under various conditions. With an equal interval of 18 mm inside the heat exchanger, the rotating porous plates are mounted. The hot and cold airs enter at opposite ends of heat exchanger and exchange heat each other. In order to measure the temperature distribution of the hot air side inside heat exchanger, the thermocouples are inserted between the plates. The first location of thermocouple is 10 mm downstream from the inlet of heat exchanger, and succeeding ten locations are aligned at an equal interval of 18 mm. As a result of the measurement, the temperature distribution inside heat exchanger was constant as the hot air temperature of inlet is low. It was found that the heat transfer rate does not depend on the variation of RPM at the lower temperature of inlet. The heat transfer rate at the higher temperature of inlet increased a little with the increase in RPM.

Evaluation of Heat Exchange Rate in Horizontal Slinky and Coil Type Ground Heat Exchangers Considering Pitch Interval (피치 간격에 따른 수평 슬링키형과 코일형 지중 열교환기의 열효율 평가)

  • Yoon, Seok;Lee, Seung-Rae;Kim, Min-Jun;Kim, Woo-Jin;Go, Gyu-Hyun;Jeon, Jun-Seo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.55-61
    • /
    • 2014
  • The need of geothermal energy is constantly increasing for economical and environmental utilization. Horizontal ground heat exchangers (GHEs) can reduce installation cost and increase efficiency. There are many kinds of GHEs, and it is known that slinky and spiral coil type GHEs show high thermal performance. Therefore, this paper presents experimental results of heat exchange rates in horizontal slinky and spiral coil type GHEs installed in a steel box whose size is $5m{\times}1m{\times}1m$. Dried Joomunjin standard sand was filled in a steel box, and thermal response tests (TRTs) were conducted for 30 hours to evaluate heat exchange rates by changing different pitch spaces of horizontal slinky and spiral coil type GHEs. As a result, spiral coil type GHE showed 30~40% higher heat exchange rates per pipe length than horizontal slinky type GHEs. Furthermore, long pitch interval (Pitch/Diameter=1) showed 200~250% higher heat exchange rates per pipe length than short pitch interval (Pitch/Diameter=0.2) in both spiral coil and horizontal slinky type GHEs, respectively.

Study on the Operation Method of Ground Source Heat Pump System Considering Recovery of Ground Temperature (지중온도회복을 고려한 지열 히트펌프 시스템의 운전방법 검토)

  • Bae, Sangmu;Jeon, Jae-Young;Kwon, Young Sik;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.4
    • /
    • pp.24-30
    • /
    • 2020
  • Ground source heat pump (GSHP) systems are actively introduced as cooling and heating conditioning systems of buildings due to annual stable performance and easily maintenance. However, ground temperature imbalance is occurred when the GSHP is used for a long period. Therefore, in this study, we proposed the operation method of the system that considered the recovery time of heat source temperature. The entering water temperature (EWT) and heat exchange rate (HER) were comparatively analyzed according to the continuous and intermittent operation. Furthermore, the underground thermal environment was evaluated by numerical analysis model. As the result, the intermittent operation was a maximum of 12.3% higher HER during the heating period than the continuous operation. In addition, the overall ground heat source temperature at the intermittent operation was higher than it at the continuous operation.