• 제목/요약/키워드: Heat exchange area

검색결과 100건 처리시간 0.024초

HEAT PIPE TYPE EXHAUST HEAT RECOVERY SYSTEM FOR HOT AIR HEATER

  • Kang, G.C.;Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.654-661
    • /
    • 2000
  • Area of greenhouse increases rapidly up to 45,265ha by the year of 1998 in Korea. Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat of the oil combusted in the furnace. In order to recapture the heat of this exhaust gas and to recycle for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The exhaust heat recovery system was made for space heating in the greenhouse. The system consisted of a heat exchanger made of heat pipes, ${\emptyset}15.88{\times}600mm$ located in the rectangular box of $600{\times}550{\times}330mm$, a blower and air ducts. The rectangular box was divided by two compartments where hot chamber exposed to exhaust gas in which heat pipes could pick up the heat of exhaust gas, and by evaporation of the heat transfer medium in the pipes it carries the heat to the cold compartment, then the blower moves the heat to greenhouse. The number of heat pipe was 60, calculated considering the heat exchange amount between flue gas and heat transfer capacity of heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/hr depending on the inlet air temperature of 12 to $-12^{circ}C$ respectively when air flow rate $1,100\textrm{m}^3/hr$. The exhaust gas temperature left the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the air and the flue gas, the temperature difference was collected by the air and the warm air temperature was about $60^{circ}C$ at the air flow rate of $1,100\textrm{m}^3/hr$. This heat pipe type exhaust heat recovery system can reduce fuel cost by 10% annually according to the economic analysis.

  • PDF

디젤 자동차용 딤플 사각 튜브형 EGR Cooler 의 열교환기 효율에 관한 연구 (Study on Heat Exchanger Efficiency of EGR Cooler with Dimpled Rectangular Tube Shape for Application of Diesel Vehicles)

  • 서영호;허성찬;구태완;송우진;김정;강범수
    • 대한기계학회논문집B
    • /
    • 제32권10호
    • /
    • pp.769-775
    • /
    • 2008
  • In this study, the investigations on the dimpled type Exhaust Gas Recirculation (EGR) cooler have been focused on the high heat exchanger efficiency. To overcome low heat exchanger efficiency of general EGR cooler, the dimpled type EGR cooler was developed. It was ensured the improvement of the performance of the dimpled type EGR cooler related to the heat exchange based on a series of the experiment. These results were caused by the increase of thermal surface area in accordance with the dimple's one. The estimation model of the heat exchanger efficiency using the Effectiveness-NTU method was also developed in order to verify the validity of experimental result. Also, the program for the estimation of the heat exchanger efficiency on the EGR cooler with regard to the dimpled tube shape was developed. Resultantly, it was confirmed that the dimpled type EGR cooler could be served better performance than the conventional one in view of the heat exchanger efficiency.

신도시 개발이 도시열섬 형성에 미치는 영향 - 분당신도시와 판교지역을 중심으로 - (Influence of New Town Development on the Urban Heat Islands - ln the Case of Pan-Gyo Area and Bun-Dang New Town -)

  • 송영배
    • 한국조경학회지
    • /
    • 제30권4호
    • /
    • pp.37-46
    • /
    • 2002
  • The main purpose of this research is to discuss the urban heat island which will be caused by urbanization, especially by the construction of new town on a wide green zone. Over the last ten years, five new towns have been developed around the Seoul metropolitan area. However these new towns become bedroom communities and create traffic problems between Seoul and its surrounding areas because of an increase in population and a lack of roads and other infrastructures. The construction of another such new town is under consideration in the Pan-gyo area. But it is important that Pan-gyo remains a wide green zone. Many studies show that green space can play an important role in improving urban eco-meteorological, ameliorative capability and air hygiene. The objective of this study is to analyze the urban heat islands of Bund-Dang Si which was constructed in 1996 and of the Pan-Gyo area planned as new town. To investigate the local thermal environment and its negative effects caused by change of the land use type and urbanization we used LANDSAT TM images for extraction of urban surface temperature according to change of land use over 15 years. These data were analyzed together with digital land use and topographic data. As a study result, we found that the thermal island of this area from 1985 to 1999 rapidly increased with a difference of mean temperature of more than 12'E. Before construction of Bun-Dang Si the temperature of this area was the same as the forest, but during the new town construction in 1991, an urban heat island developed. The temperature of forest with a size of over 50% of the investigation area was lowest, which leads us to conclude that the forest cools the urban and its surroundings. The mean temperature of the residential and commercial area is more than +4.5$^{\circ}C$ higher then forest, so this method of land use is the main factor increasing the urban heat island. Urban heat islands and green space play an important role in urban wind systems, i.e. Thermal Induced Air Exchange and Structural Wind Circulation, because of their special properties with regard to energy balance between constructed urban and land. The skill to allocate land use types in urban areas is a very important planning device to reduce air pollution and induce the fresh cold air from green space. An urban climatic experiment featuring a numerical wind simulation study to show the air corridor will be published in a following research paper.

온풍난방기의 배기열을 이용한 지중 난방용 온수공급시스템의 열회수특성 (Heat Recovery Characteristics of the Hot Water Supply System with Exhaust Heat Recovery Unit Attached to the Hot Air Heater for Plant Bed Heating in the Greenhouse)

  • 김영중;유영선;장진택;강금춘;이건중;신정웅
    • Journal of Biosystems Engineering
    • /
    • 제25권3호
    • /
    • pp.221-226
    • /
    • 2000
  • Hot air heater with light oil burner is the most common heater for greenhouse heating in the winter season in Korea. However, since the thermal efficiency of the heater is about 80∼85%, considerable unused heat amount in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The heat recovery system is made for plant bed or soil heating in the greenhouse. The system consisted of a heat exchanger made of copper pipes, ${\Phi}12.7{\times}0.7t$ located in the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tank. The total heat exchanger area is 1.5$m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to the performance test it could recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690\ell$/hr from the waste heat discharged. The exhaust gas temperature left the heat exchanger dropped to $100^{\circ}C$ from $270^{\circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{\circ}C$ from $21^{\circ}C$ at the water flow rate of $690\ell$/hr. By the feasibility test conducted in the greenhouse, the system did not encounter any difficulty in operations. And, the system could recover 220,235kJ of exhaust gas heat in a day, which is equivalent of 34% of the fuel consumption by the water boiler for plant bed heating of 0.2ha in the greenhouse.

  • PDF

지하수를 이용한 양액냉각시스템 개발에 관한 기초연구 (A Fundamental Study on the Nutrient Solution Cooling System Utilizing Ground Water)

  • 남상운;손정익;김문기
    • 생물환경조절학회지
    • /
    • 제2권1호
    • /
    • pp.1-8
    • /
    • 1993
  • Experimental and theoretical analyses were carried out to investigate the heat exchange characteristics of the nutrient solution cooling system utilizing ground water. The material of heat exchanger used in the experiment was polyethylene and the cross-flow type was adapted in which nutrient solution was mixed and ground water unmixed. For the exchanger surface area of 0.33$m^2$ and flow rates of ground water of 1-6$\ell$/min, NTU(number of transfer units) and effectiveness of experimental heat exchanger were 0.1-0.45 and 10-35%, respectively. Therefore these results showed that the hydroponic greenhouse of 1,000$m^2$(300 pyong) with the ground water of 10$m^2$/day could cover about 55-70% of maximum cooling load in summer.

  • PDF

지열히트펌프 시스템의 국내 적용현황 조사 및 분석 (Investigation and Analysis on the present state of Geothermal Source Heat Pump System Applied in Korea)

  • 최미영;고명진;김용식;박진철;이언구
    • 설비공학논문집
    • /
    • 제21권5호
    • /
    • pp.267-272
    • /
    • 2009
  • This study aims to investigate and analyze the present state of ground source heat pump(GSHP) system applied in Korea. It is based on the statistic from the New and Renewable Energy Center in Korea and construction results of the professional companies registered to the center. The research items were installed area, installed year, building use, ground heat exchange type and heat exchanger type of the pump. According to the result of investigation, the using GSHP system have been increasing steadily as the space heating and cooling system in a building. The capacity of this system is also becoming lager based on technical and economical feasibility analysis about the system since GSHP system first introduced in 2000.

접지층에서 대기난류의 역할과 에너지 평형 (Role of Atmospheric Turbulences and Energy Balances in the Atmospheric Surface Layer)

  • 권병혁;김근희;김광호;강동환
    • 한국습지학회지
    • /
    • 제11권1호
    • /
    • pp.105-113
    • /
    • 2009
  • 연안습지 생태계에서 열에너지 교환 과정은 매우 중요하다. 지표 열에너지 평형을 이루는 요소인 순복사플럭스, 현열 플럭스, 잠열 플럭스 그리고 토양열 플럭스를 전라남도 고흥에 위치한 수평적으로 균질하다고 판단되는 지역인 고흥만 간척지에서 관측하고 분석하였다. 열의 수송을 평가하기 위해서 5회의 집중관측 기간에 대기 난류를 측정하였고, 특히 갈대로 덮여있는 간척지에서 지표층 열에너지 수지를 분석하기 위해서는 물과 매우 미세한 입자로 구성된 토양 그리고 계절에 따라 색깔과 밀도가 변하는 식생캐노피를 고려하였다. 순복사 플럭스, 현열 플럭스, 잠열 플럭스, 토양열 플럭스를 기존의 에너지 수지방정식에 적용하여 식생과 토양과 같은 지표면 특성에 따른 열 플럭스의 특징을 조사하여 습지의 기온조절 효과에 대해 알아보았다. 에너지 수지비로 식생 성장기에는 주로 잠열 플럭스에 의해 열이 대기로 전달되는 것을 알 수 있었다. 또한 식생층은 열을 저장하여 기온의 일교차를 줄이는 역할을 한다. 여름철에 집중관측지의 기온이 주변 지역의 기온보다 보다 낮고 겨울철에는 다소높게 나타난 결과는 식생층을 포함하는 연안습지가 열환경을 조절함을 보여주었다.

  • PDF

2차원 축열벽형 태양열시스템의 열성능해석 및 최적화 (Thermal Performance Analysis and Optimization of Two-dimensional Trombe Wall Solar System)

  • 이원근;유성연;정명균
    • 대한기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.1609-1620
    • /
    • 1993
  • 본 연구에서는 자연형 태양열시스템의 열성능에 영향을 미치는 인자를 열유동 전산해석을 통해 규명하고 모델을 설정하여 활용률을 최대로 하는 형상을 제시하고자 한다.

열펌프 시스템의 규모 결정을 위한 온돌난방부하 특성 (Characteristics of Ondol Heating Load for the Determination of Heat Pump Power)

  • 노정근;백은기;송현갑
    • Journal of Biosystems Engineering
    • /
    • 제28권3호
    • /
    • pp.217-224
    • /
    • 2003
  • To find out heating load and to determine the power of heat pump compressor for the Ondol room heating the COP of heat pump, the variation of Ondol room air temperature, the variation of ambient temperature and power consumption of heat pump are analyzed. The results from this study were summarized as follows: 1. The COP of the heat pump in close loop decreased as the ambient air temperature. The COP was 2.26 when the temperature difference of condenser was $20\pm3^{\circ}C$. 2. The Ondol surface temperature was $25\pm3^{\circ}C$ when the hot water of $40^{\circ}C$ was supplied from hot water storage tank to the Ondol and the temperature difference between the Ondol surface and the room air temperature was $7~8^{\circ}C$. 3. The ratio of thermal conduction heating load to total heating load in Ondol heating space was found to be 83% and ratio of ventilation heating load was 17%. Therefore, the thermal conduction heating load was confirmod to be a major heating load in Ondol heating space. 4. In case of the ambient temperature of $3.2^{\circ}C$, the efficiency of heat exchange of Ondol heating system was 85%. 5. The heating load per Ondol heating surface area and volume of Ondol room space were theoretically analyzed. In case of the room temperature of $20^{\circ}C$ and the ambient temperature of $-3.2~3.8^{\circ}C$, the heating load per Ondol surface area was 115.8~167.6kJ/h ㆍ㎥ and per Ondol mom space volume was 50.2~72.7kJ/h ㆍ㎥. 6. The compressor power of heat pump fur the Ondol room heating could be determined with the heating load analyzed in this study In case of the Ondol room air temperature of 17~2$0^{\circ}C$ and the ambient temperature of -5~3.8$^{\circ}C$, the compressor power of heat pump per Ondol surface area was analyzed to be $2.3\times10^{-2}psm^2$, and per volume of Ondol room space $1.0\times10^{-2}1.4\times10^{-2}ps/m^2$ps.

다기관 4사이클 스파크 점화기관의 가스 교환과정에 관한 예측 (Prediction on gas exchange process of a multi-cylinder 4-stroke cycle spark ignition engine)

  • 이병해;이재철;송준호
    • 오토저널
    • /
    • 제13권2호
    • /
    • pp.67-87
    • /
    • 1991
  • The computer program which predicts the gas exchange process of multi-cylinder 4-Stroke cycle spark-ignition engine, can be great assistance for the design and development of new engine. In this study, the computer program was developed to predict the gas exchange process of multi-cylinder four stroke cycle spark ignition engine including intake and exhaust systems. When gas exchange process is to be calculated, the evaluation of the variation of the thermo-dynamic properties with time and position in the intake and exhaust systems is required. For the purpose, the application of the generalized method of characteristics to the gas exchange process is known as one of the method. The simulation model developed was investigated to the analysis of the branch system of multi-cylinder. The models used were the 2-zone expansion model and single zone model for in cylinder calculation and the generalized method of characteristic including area change, friction, heat transfer and entropy gradients for pipe flow calculation. The empirical constants reduced to least number as possible were determined through the comparison with the experimented indicator diagram of one particular operation condition and these constants were applied to other operating condition. The predicted pressures in cylinder were compared with the experimental results over the wide range of equivalence ratio and ignition timing. The predicted values have shown good agreement with the experimental results. The thermodynamic properties in the intake and exhaust system were predicted over the wide range of equivalence ratio and ignition timing. The obtained results can be summarized as follows. 1. Pressures in the exhaust manifold have a little influence on the equivalence ratio, a great influence on the ignition timing. 2. Pressures in the inlet manifold are nearly unchanged by the equivalence ratio and the ignition timing. 3. In this study, the behaviors of the exhaust temperature, gas in the exhaust manifold were ascertained.

  • PDF