• 제목/요약/키워드: Heat evolution equation

검색결과 24건 처리시간 0.024초

EVOLUTION EQUATIONS ON A RIEMANNIAN MANIFOLD WITH A LOWER RICCI CURVATURE BOUND

  • Chang, Jeongwook
    • East Asian mathematical journal
    • /
    • 제30권1호
    • /
    • pp.79-91
    • /
    • 2014
  • We consider the parabolic evolution differential equation such as heat equation and porus-medium equation on a Riemannian manifold M whose Ricci curvature is bounded below by $-(n-1)k^2$ and bounded below by 0 on some amount of M. We derive some bounds of differential quantities for a positive solution and some inequalities which resemble Harnack inequalities.

HÖLDER CONVERGENCE OF THE WEAK SOLUTION TO AN EVOLUTION EQUATION OF p-GINZBURG-LANDAU TYPE

  • Lei, Yutian
    • 대한수학회지
    • /
    • 제44권3호
    • /
    • pp.585-603
    • /
    • 2007
  • The author studies the local $H\ddot{o}lder$ convergence of the solution to an evolution equation of p-Ginzburg-Landau type, to the heat flow of the p-harmonic map, when the parameter tends to zero. The convergence is derived by establishing a uniform gradient estimation for the solution of the regularized equation.

HIGHER ORDER OPERATOR SPLITTING FOURIER SPECTRAL METHODS FOR THE ALLEN-CAHN EQUATION

  • SHIN, JAEMIN;LEE, HYUN GEUN;LEE, JUNE-YUB
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제21권1호
    • /
    • pp.1-16
    • /
    • 2017
  • The Allen-Cahn equation is solved numerically by operator splitting Fourier spectral methods. The basic idea of the operator splitting method is to decompose the original problem into sub-equations and compose the approximate solution of the original equation using the solutions of the subproblems. The purpose of this paper is to characterize higher order operator splitting schemes and propose several higher order methods. Unlike the first and the second order methods, each of the heat and the free-energy evolution operators has at least one backward evaluation in higher order methods. We investigate the effect of negative time steps on a general form of third order schemes and suggest three third order methods for better stability and accuracy. Two fourth order methods are also presented. The traveling wave solution and a spinodal decomposition problem are used to demonstrate numerical properties and the order of convergence of the proposed methods.

Heat Transfer of an Evaporating Liquid on a Horizontal Plate

  • Joo, Sang-Woo;Park, Min-Soo;Kim, Min-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제19권8호
    • /
    • pp.1649-1661
    • /
    • 2005
  • We consider. a horizontal static liquid layer on a planar solid boundary. The layer is evaporating when the plate is heated. Vapor recoil and thermo-capillary are discussed along with the effect of mass loss and vapor convection due to evaporating liquid and non-equilibrium thermodynamic effects. These coupled systems of equations are reduced to a single evolution equation for the local thickness of the liquid layer by using a long-wave asymptotics. The partial differential equation is solved numerically.

PREDICTION OF MICROSTRUCTURE EVOLUTION AND HARDNESS DISTRIBUTION IN THE WELD REPAIR OF CARBON STEEL PIPELINE

  • Li, Victor;Kim, Dong
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.205-210
    • /
    • 2002
  • This article presents an integrated modeling approach for coupled analysis of heat transfer and microstructure evolution in welding carbon steel. The modeling procedure utilizes commercial [mite element code ABAQUS/Standard as the platform for solving the equation of heat conduction. User subroutines that implement computational thermodynamics and kinetics models are integrated with the FEA code to compute the transient microstructure evolution. In this study, the integrated models are applied to simulate the hot-tap repair welding of carbon steel pipeline. Microstructural components are treated as user output variables. Based on the predicted microstructure and cooling rates, hardness distributions in the welds were also predicted. The predicted microstructure and hardness distribution were found in good agreement with metallographic examinations and hardness measurements. This study demonstrates the applicability of computational models for the development of welding procedure for in-service pipeline repair.

  • PDF

Prediction of Microstructure Evolution and Hardness Distribution in the Weld Repair of Carbon Steel Pipeline

  • Li, V.;Kim, D.
    • International Journal of Korean Welding Society
    • /
    • 제2권2호
    • /
    • pp.1-6
    • /
    • 2002
  • This article presents an integrated modeling approach for coupled analysis of heat transfer and microstructure evolution in welding carbon steel. The modeling procedure utilizes commercial finite element code ABAQUS/Standard as the platform for solving the equation of heat conduction. User subroutines that Implement computational thermodynamics and kinetics models are integrated with the FEA code to compute the transient microstructure evolution. In this study, the integrated models are applied to simulate the hot-tap repair welding of carbon steel pipeline. Microstructural components are treated as user output variables. Based on the predicted microstructure and cooling rates, hardness distributions in the welds were also predicted. The predicted microstructure and hardness distribution were found in good agreement with metallographic examinations and hardness measurements. This study demonstrates the applicability of computational models for the development of welding procedure for in-service pipeline repair.

  • PDF

변태잠열을 고려한 담금과정의 열전도 해석 (Heat Distribution Analysis of an End-Quenching Process Considering Latent Heat of Transformation)

    • 한국생산제조학회지
    • /
    • 제7권3호
    • /
    • pp.79-84
    • /
    • 1998
  • It is very difficult to analyze the transient temperature distribution during quenching of the steel because of coupled effects among temperature, structures and stresses. In this paper, using Inoue's equation of evolution and mixture rule, transient temperature distribution is calculated by the finite element method considering latent heat of transformation structure and temperature dependence of physical and mechanical prperties for the 0.45% carbon cylindrical steel bar with 40mm diameter and 20mm height during end-quenching.

  • PDF

콘크리트의 단열온도 상승량의 정량화에 관한 실험적 연구 (An Experimental Study on the Evaluation of Adiabatic Temperature Rise of Concrete)

  • 강석화;이용호;정한중;박칠림
    • 콘크리트학회지
    • /
    • 제7권6호
    • /
    • pp.186-196
    • /
    • 1995
  • 본 연구에서는 국내에서 생산되는 시멘트의 발열상태에 대한 정량화를 목적으로 A시멘트사에서 생산되는 보통포틀란드시멘트를 그 대상으로 하여 단위시멘트량 및 타설온도를 주요변수로 한 단열온도 상승시험을 실시하여 각 변수가 콘크리트의 단열온도 상승량 및 발열속도에 미치는 영향을 검토하였고, 현재 시방서에 제시되어 있는 단열온도 상승시험 결과에 대하여 재검토를 하였다. 또한 이러한 시험결과가수치해석법에서 어떠한 영향을 미치는 가를 검토하였다. 검토결과 보통포틀란드시멘트에 대해서 시방서에 제시되어 잇는 단열온도상승량은 실제보다 과대평가하고 있으며, 시방서에 제시되어 있는 2-parameter 식 형태는 발열상태를 과대평가하고 있으며 이 식보다는 3- parameter식이 시멘트의 발열상태를 더 잘 근사하고 있음을 알았다. 또한 단열온도상승시험을 통해 얻어진 결과와 시방서에 제시된 값을 사용한 경우를 각각 수치해석법으로 해석한 결과, 온도는 큰 차이가 없었으나 온도응력은 외부구속이 강한 경우에는 약 20%정도가 큰 안전측의 해석결과를 나타내 시공계획 수립시에는 주의하지 않으면 안된다는 것을 알았다.

변태잠열을 고려한 담금시편의 온도 및 조직분포에 대하여 (On the distribution of temperature and metallic structures in quenching process considering latent heat of phase transformation)

  • 민수홍;구본권
    • 오토저널
    • /
    • 제6권4호
    • /
    • pp.46-53
    • /
    • 1984
  • The analysis of temperature distribution and change of metallic structures during water quench were presented by finite element method. In temperature calculation the equation of unsteady state hear conduction problem considering latent heat due to phase transformation was applied to finite solid cylinder, SM 45C of 40mm diameter and 40mm height. In metallic structure analysis iso-thermal transformation curve and the equations of evolution in pearlite-martensite transformation were applied. The calculated results upon temperature and metallic structures were agreed with those of experimental observations.

  • PDF

전력용 반도체소자(IGBT)의 모델링에 의한 열적특성 시뮬레이션 (Modeling and Thermal Characteristic Simulation of Power Semiconductor Device (IGBT))

  • 서영수;백동현;조문택
    • 한국화재소방학회논문지
    • /
    • 제10권2호
    • /
    • pp.28-39
    • /
    • 1996
  • A recently developed electro-thermal simulation methodology is used to analyze the behavior of a PWM(Pulse-Width-Modulated) voltage source inverter which uses IGBT(Insulated Gate Bipolar Transistor) as the switching devices. In the electro-thermal network simulation methdology, the simulator solves for the temperature distribution within the power semiconductor devices(IGBT electro-thermal model), control logic circuitry, the IGBT gate drivers, the thermal network component models for the power silicon chips, package, and heat sinks as well as the current and voltage within the electrical network. The thermal network describes the flow of heat form the chip surface through the package and heat sink and thus determines the evolution of the chip surface temperature used by the power semiconductor device models. The thermal component model for the device silicon chip, packages, and heat sink are developed by discretizing the nonlinear heat diffusion equation and are represented in component from so that the thermal component models for various package and heat sink can be readily connected to on another to form the thermal network.

  • PDF