• Title/Summary/Keyword: Heat energy

Search Result 7,986, Processing Time 0.041 seconds

The Operation Characteristics of a Sea Water Source Heat Pump System (해수열원 히트펌프 시스템의 운전특성)

  • Chang, Ki-Chang;Baik, Young-Jin;Ra, Ho-Sang;Kim, Ji-Young;Lee, Jae-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1353-1357
    • /
    • 2008
  • A sea water source cascade heat pump was designed and tested in this study. The system was designed to perform a single stage operation in summer, as well as a cascade operation in winter to ensure the high temperature lift. A steady-state simulation model was developed to analyze and optimize its performance. The simulation results show that the R717 exhibits best performance among combinations considered in this study. A R410A also exhibits the highest performance among HFCs with the smallest compressor displacement. A 15-RT R410A-R134a pilot system was installed in the 5-story commercial building at Samcheok City by the East Sea. A scroll type R410A compressor, a reciprocating type R134a compressor, plate type condenser/ evaporator/ cascade heat exchanger and two electronic expansion valves were used to build a pilot. A titanium plate type heat exchanger is also used for the heat exchanging with a sea water. The heat source/sink water is supplied from the well below the seashore in the depth of 5 m. In the initial test of the system, supply water temperature was rising up to $67^{\circ}C$ using a sea water heat source of $9^{\circ}C$, while an ambient temperature was $4.5^{\circ}C$.

  • PDF

Study on longitudinal variation of subcooling with high elevated liquid line in a modular heat pump system (모듈형 동시냉난방 열펌프의 장배관/고낙차에 따른 액선 과냉도 변화에 대한 연구)

  • Shin, Kwang-Ho;Kim, Min-Sung;Baik, Young-Jin;Ra, Ho-Sang;Park, Sung-Ryung
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1255-1260
    • /
    • 2008
  • This study is simulation of high elevated liquid line of a modular heat pump system to observe longitudinal subcooling variation. In a high elevated tube, subcooled refrigerant(R410A) through a condenser changes its states by heat transfer with surrounding air and by pressure drop from elevation. In this study, the liquid line was simulated through correlations of heat transfer and pressure drop for the variation from single-phase into two-phase flow. Pressure drop, heat transfer rate and vapor quality were calculated as key parameters. Two-phase turning heights and variations of the key parameters were confirmed from the simulation. As a result, high elevation of liquid line has great influence on upward flow, which requires additional equipment to compensate the variation.

  • PDF

Analysis of the Electric Energy and Exhaust Heat Energy for the Application of Thermo-Electric Generation in a Gasoline Vehicle (열전발전 적용을 위한 가솔린차량의 전력 및 배기열 에너지 분석 연구)

  • 이영재;표영덕;김강출
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.99-105
    • /
    • 2002
  • About 70% of energy input to internal combustion engine is rejected to atmosphere by heat. By utilizing this waste heat, a plenty of energy can be conserved in nationwide. One of possible ways is the thermoelectric generation to utilize engine's waste heat to provide auxiliary electric power. Under th is concept, we have been developing the thermoelectric generation system to replace the alternator by converting the waste heat in the engine's exhaust directly to electricity This system may reduce the shaft horse power of the engine, then improves the vehicle fuel economy and the exhaust emissions. In the present study, the characteristics of the electric energy and exhaust heal energy in city and highway mode driving conditions are analysed by using a gasoline passenger car. These results would be used to determine the optimum design parameters of the thermoelectric generation system.

Energy Partition to Workpiece in Creep feed Grinding (크리피드연삭에서 공작물로 유입되는 에너지 비율)

  • 김남경;박호성;홍순익;송지복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.799-804
    • /
    • 1997
  • This paper is concerned with the heat flux distribution and energy partition for creep-feed grinding. Form measurements of transient grinding temperatures in the workpiece sub-surface using an embeded thermocouple, the overall energy partition to the workpiece was estimated form moving heat source theory for a triangular heat flux distribution as 3.0% for down grinding and 4.5% for up grinding. The higher energy partition for up grinding can be attributed to the need to satisfy thermal compatibility at the grinding zone. The influence of cooling outside the grinding zone can be analytically taken into account by specifying convective heat transfer coefficients on the workpiecs surface h /sab a/ heat source (grinding zone) and h /sab b/ behind the heat source. The smaller energy patition together with slightly lower grinding power favors down grinding over up grinding.

  • PDF

Effects of Working Fluid Filling Ration and Heat Flux on Correlations of Heat Transfer Coefficient in Loop Thermosyphon

  • Chang, Ki-Chang;Lee, Young-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.153-161
    • /
    • 2002
  • Due to the coupling between momentum and energy transport theoretical analysis of the loop performance is very complicate, therefore it is necessary that these problems be solved by experimental investigation before applying the loop thermosyphon to heat exchanger de-sign. The evaporator and condenser of the loop thermosyphon were made of carbon-steel, and distilled water was used as working fluid in the experiments. From the experimental data correlations of heat transfer coefficient for evaporator and condenser sections were obtained. For heat fluxes in the range of 13000~78000 W/$m^2$, the correlation equations of heat transfer coefficients in evaporator and condenser predict the experimental behavior to within $\pm$5% and $\pm$20% respectively.

Analysis of Thermal Performance of Ground-Source Heat Pump System (지열 이용 히트펌프 시스템의 열성능 해석)

  • Shin, U-Cheul;Baek, Nam-Choon;Kim, Ook-Joong;Koh, Deuk-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.95-101
    • /
    • 2006
  • The purpose of this study is to present the simulation results and an overview of the performance assessment of the Ground-Source Heat Pump(GSHF) system. The calculation was performed for two design factors: the spacing between boreholes and the depth of the vertical ground heat exchangers. And the simulation was carried out using the thermal simulation code TRNSYS with new model of water to water heat pump developed by this study. As a result, it was anticipated that the yearly mean COPs of heat pump for heating and cooling are about 3.7 and 5.8 respectively and the heat pump can supply 100% of heating and cooling load all the year around.

Feasibility Study of the Decay Heat Removal Capability Using the Concept of a Thermosyphon in the Liquid Metal Reactor

  • Kim, Yeon-Sik;Sim, Yoon-Sub;Kim, Eui-Kwang
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.342-348
    • /
    • 2001
  • A new design concept for a decay heat removal system in a liquid metal reactor is proposed. The new design utilizes a thermosyphon to enhance the heat removal capacity and its heat transfer characteristics are analyzed against the current PSDRS (Passive Safety Decay heat Removal System) in the KAL IMER (Korea Advanced LIquid MEtal Reactor) design. The preliminary analysis results show that the new design with a thermosyphon yields substantial increase of 20∼40% in the decay heat removal capacity compared to the current design that do not have the thermosyphon. The new design reduces the temperature rise in the cooling air of the system and helps the surrounding structure in maintaining its mechanical integrity for long term operation at an accident. Also the analysis revealed the characteristics of the interactions among various heat transfer modes in the new design.

  • PDF

Heat Exchanger Design of a Heat Pump System Using the Heated Effluent of Thermal Power Generation Plant as a Heat Source for Greenhouse Heating (화력발전소의 온배수를 열원으로 이용하는 시설원예 난방용 히트펌프 시스템의 열교환기 설계기준 설정)

  • Ryou, Young Sun;Kang, Youn Ku;Jang, Jae Kyung;Kim, Young Hwa;Kim, Jong Goo;Kang, Geum Chun
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.372-378
    • /
    • 2012
  • This study was carried out in order to determine the optimum length of a roll type PE pipe heat exchanger employed in the water-to-water heat pump system using the waste heat of the heated effluent flowed out from thermal power generation plants as a heat source. And the heat pump system of 30 RT for an experimental test was designed and manufactured. And also PE pipes were employed to recover the waste heat from the heated effluent. The inside diameter of PE pipe heat exchanger was 20 mm, the thickness was 2 mm and the diameter of a roll was 1,000 mm. And from the results of this study, we found that the optimum length of PE pipe heat exchanger was 75 m per the heat pump capacity of 1.0 RT (3.51 kW) and then the heating COP of heat pump system was 3.8.

Evaluation on Thermal Energy Performance of a Plate Heat Exchanger (판형열교환기의 열에너지 성능평가)

  • Kang, Byung-Ha;Kim, Do-Kyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2003
  • Performance evaluation on thermal transport of a plate heat exchanger has been carried out. The $\varepsilon$-Ntu method is employed to evaluate the performance of a brazed type of plate heat exchanger. This problem is of particular interest in the design of a plate heat exchanger. The characteristics of heat transfer as well as pressure drop are studied in the wide range of Reynolds numbers in the cold side while that of hot side is fixed at 620. f-factor correlation in a plate heat exchanger is obtained from the pressure drop data. It is also found that the effectiveness of the plate heat exchanger is increased as the Ntu is increased.

A Comparative Study of Heat Pipes with Enlarged Condenser Section for Evacuated Solar Collectors (확관 응축부를 갖는 진공관형 태양열 집열기용 히트파이프 성능 비교 연구)

  • Boo, Joon-Hong;Chung, Won-Bok;Kwak, Hee-You
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.18-25
    • /
    • 2002
  • For application to medium temperature solar collerctors $(80\sim120^{\circ}C)$, a heat pipe should be designed properly to efficiently transfer heat to a hotter condenser than common applications. Among many wick structure candidates for heat pipes of this type, a slab wick was selected based on promising performance data reported previously. The thermal performance of slab wick heat pipes, screen wick heat pipes and thermosyphons with enlarged condenser section were experimentally investigated for comparison purpose. The heat pipes were 8.0 mm O.D. (evaporator section) and 25.4 mm O.D. (condenser section) made of copper. The experimental data of the heat pipes were analysed in terms of thermal resistance against thermal load and coolant temperature.