• Title/Summary/Keyword: Heat discharge

Search Result 538, Processing Time 0.027 seconds

The Dielectric Properties of Hexamethyldisiloxane Thin Films by Plasma Polymerization (플라즈마 중합법에 의한 Hexamethyldisiloxane 박막의 유전특성)

  • 이상희;최충석;신태현;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.131-133
    • /
    • 1993
  • Plasma polymerized thin films were prepared using an interelectrode capacitively coupled gas flow type reactor. Hexamethyldisiloxane was chosen as the monomer to be used. The dielectric properties of the thin films have been investigated with the changes of discharge power, heat treatment temperature and frequency. The relative dielectric constant was increased with an increasing of discharge power, but was decreased with an increasing of heat treatment temperature.

  • PDF

A Study on the Ventilation Performance Estimation of Marketing Ventilation Fan Used in the Apartment House Kitchen (공동주택의 주방에서 사용되는 시판 환풍기의 환기 성능 평가에 관한 연구)

  • 송필동;함진식
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2002.11a
    • /
    • pp.315-320
    • /
    • 2002
  • Marketing ventilation fan 3 kinds been using in kitchen of apartment house into compensation discharge performance of contaminant measure. When propane gas burns by gas table, did waste heat into measurement compensation with carbon dioxide that it happens. In measured all type of exhaust fan, discharge performance of carbon dioxide and waste heat was high there are been much displacement. Among A, B, C three types, performance of A type exhaust fan was most superior and performance of C type exhaust fan was most poor

  • PDF

Analysis on the Performance of a Transcritical Cycle Using Carbon Dioxide (이산화탄소를 이용한 초월임계사이클의 성능해석)

  • 김성구;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.471-479
    • /
    • 2003
  • A simulation on the performance of a transcritical $CO_2$ heat pump system is carried out to investigate its characteristics for various operating conditions. Cycle simulation models are established for a steady-state simulation and are verified by comparing experimental data. Based on correlations and methods available in the literature, the processes in individual components of the transcritical cycle are simulated to analyze the performance of $CO_2$ transcritical heat pump system. The simulation models are good enough to predict the performance of a $CO_2$ transcritical cycle. Simulation results are provided to show the relative effects when varying the size of internal heat exchanger and the discharge pressure of a compressor.

Thermal response of porous media cooled by a forced convective flow (강제대류에 의해 냉각되는 다공물질의 열응답 특성)

  • 백진욱;강병하;현재민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.600-609
    • /
    • 1998
  • The experimental investigation of thermal response characteristics by the air flow through the porous media has been carried out. The packed spheres of steel or glass were considered as the porous media in the present study. Temperature distributions of the fluid in the porous media as well as pressure drops through the porous media were measured. The transient temperature variations in the porous media are compared favorably with the analytical results in the high Reynolds number ranges. However, in the low Reynolds number ranges, the experimental data deviate from the analytical results, due to the dominant heat conduction penetration to the upstream direction, which is not considered in the analytical model. The cool-down response of porous media is found to be dependent upon the specific dimensionless time considering the material property and air velocity. The heat discharge process is recommended to be operated until a certain time, considering the cost efficiency.

  • PDF

Characteristic of the Ion Wind Using Corona Discharge and Enhancement of Heat Transfer (코로나 방전을 이용한 이온풍의 특성분석 및 열전달 향상)

  • Lee Jae-Il;Hwang Yu-Jin;Joo Ho-Young;Ahn Young-Chull;Shin Hee-Soo;Lee Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1022-1027
    • /
    • 2005
  • An experimental study is conducted to investigate the characteristics of the ion wind generated by the electric field between a needle electrode and the parallel plate electrodes. The ion wind enhances heat and mass transfer between the surface and the surrounding gas. Moreover such enhancement makes no noise or vibration. This study is conducted to develop the electronic cooling device. The measured gas velocities and heat transfer coefficients are proportional to the applied voltage. The heat transfer coefficient can be increased as compared with a natural convection. The maximum enhancement of heat transfer obtained in this system is $47\%$ for 3 W in heat transfer rate.

Effect of Discharge Electrode Shape of a Barrier Discharge Type Gas Pump on Ionic Wind Generation (장벽 방전형 공기 펌프의 이온풍 발생에 미치는 방전전극 형상의 영향)

  • Hwang, Deok-Hyun;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.994-998
    • /
    • 2009
  • Existing cooling technologies no longer provide adequate heat dissipation due to excessive heat generation caused by the growing component density on electronic devices. An ionic gas pump can be used for the thermal management of micro-electronic devices, since the size of pump can be reduced to a micrometer scale. In addition, the gas pump allows for gas flow control and generation without moving parts. This ideal property of gas pump gives rise to a variety of applications. However, all these applications require maximizing the wind velocity of gas pump. In this study a barrier discharge type gas pump, with a needle-shaped corona electrode instead of a plate-shaped corona electrode, has been investigated by focusing on the corona electrode shape on the wind velocity and wind generation yield. As a result, the enhanced wind velocity and wind generation yield of 1.76 and 3.37 times were obtained with the needle-shaped corona electrode as compared with the plate-shaped corona electrode of the proposed barrier discharge type gas pump.

Experimental Study on Thicknesss of Heat Storage Zone in Small Solar Pond (소형실험태양(小型實驗太陽)연못에서 열저장층(熱貯藏層)의 두께에 관(關)한 실험적(實驗的) 연구(硏究))

  • Pak, Ee-Tong;Seo, Ji-Weon
    • Solar Energy
    • /
    • v.7 no.2
    • /
    • pp.22-29
    • /
    • 1987
  • This paper dealed with thickness variation of bottom heat sotrage zone due to salinity and flow rate of extration hot brine in small test solar pond (0.5m wide, 0.5m high, 1.0m long). Testing apparatus and situation were follows: 7.1 cm of height of suction diffuser and 1.8cm of height of discharge diffuser above the test pond respectively, 0.3cm of slot size of suction diffuser, 1.0cm of slot size of discharge diffuser, 47cm of length of the slot; heating of hot water ($75^{\circ}C$) through separated hot water tank, discharge of the brine into storage zone through discharge diffuser, the extration of the brine through suction diffuser, circulation of the extracted brine through a heat exchanger (cooler). Following results were obtained through the experiments. 1. In small test solar pond, the typical three zone which showed up in real solar pond were established. 2. Richardson Number was used more effectively to confirm hydrodynamic stability of the stratified flow. 3. The thickness of non convective layer had a great effect on the heat storage of the bottom convective layer, then the temperature of bottom convective layer had a relation to that of upper convective layer. 4. Optimum operating condition in the test pond was on 10%-15% of salt concentration and $0.05m^3/hr$ of flow rate of extraction hot brine. 5. Following thickness of 3 zones were available to obtain under optimum operation condition: o bottom storage zone: $30%{\pm}10%$ of total pond depth o non-convective zone: $40%{\pm}10%$ of total pond depth o Upper surface zone: $20%{\pm}10%$ of total pond depth.

  • PDF

A Study on the Nitriding of Sintered Metallic Components by Hollow Cathode Discharge (할로우 캐소드 방전에 의한 금속소결부품의 질화처리에 관한 연구)

  • Kim, Y.C.;Han, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.2
    • /
    • pp.80-84
    • /
    • 2012
  • An apparatus was constructed to nitrify small metallic sintered components by using a hollow-cathode discharge plasma method. A stainless steel basket, which contains a sintered part to be nitrified, is potentially grounded and serves as hollow-cathode electrode. Hollow-cathode plasma was produced by supplying the positive voltage to the anode. In this study sintered carbon iron and stainless steel were used as testing specimens. It was shown that an effective nitrifying took place by controlling the total pressure of nitrogen and hydrogen gas and applied voltage.

A Study on the Evaluation of Air Change Efficiency of Multi-Air-Conditioner Coupled with Ventilation System

  • Kwon, Yong-Il;Han, Hwa-Taik
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.3
    • /
    • pp.101-107
    • /
    • 2007
  • Indoor air quality becomes of a concern recently in view of human health. This study investigates the air diffusion performance and the air change efficiency of a classroom, when outdoor air is introduced in two different ways in addition to the heating/cooling operation of a ceiling-mounted heat pump. A CFD analysis has been performed to investigate the effect of the discharge angle of the air jets from the heat pump for both parallel and series types of outdoor air system. It is observed that the series type creates more uniform indoor environment compared to the parallel type in general. It can be concluded the discharge angle should not be larger than 40o for the parallel type, in order not to generate thermal stratification in the room.

Noise Reduction of PDP Module (PDP 모듈의 소음 저감)

  • Choi, Soo-Yong;Lee, Seok-Yeong;Joo, Jae-Man;Kang, Jung-Hun;Oh, Sang-Kyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.204-209
    • /
    • 2002
  • A PDP(Plasma Display Panel) module consists of a discharge panel, a SMPS(Switched Mode Power Supply) for power supply, driving boards for panel control, and a logic board. Driving boards supply high voltage pulses to induce glow discharge in the PDP panel. The electrical pulses excite the circuit elements and subsequently generate acoustic noises. The main sources of the noise in the circuit are the transformer of SMPS and the power MOSFET(Metal Oxide Semiconductor Field Effect Transistor) of driving boards, and the heat sinks often amplify the noise level. The reduction of the acoustic noises was achieved by modifying both the structural and circuit elements. The structural method was executed by the improvement of heat sinks. The optimization of SMPS and condensers was carried out for the circuit elements.

  • PDF