• Title/Summary/Keyword: Heat demand

Search Result 488, Processing Time 0.022 seconds

Trend Evaluation of Self-sustaining, High-efficiency Corrosion Control Technology for Large-scale Pipelines Delivering Natural Gas by Analyzing Patent Data (특허데이터 분석을 통한 천연가스 공급용 대규모 파이프라인을 위한 자립형 고효율 부식 방지 기술의 동향평가)

  • Lee, Jong-Won;Ji, Sanghoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.730-736
    • /
    • 2019
  • The demand for natural gas, which is considered an environmentally friendly energy source, is increasing, and at the same time, the market share of large pipelines for natural gas supply is increasing continuously. On the other hand, the corrosion of such large pipelines reduces the efficiency of natural gas transportation. Therefore, this study aims to establish a strategy for securing the patent rights of related technologies through quantitative analysis of patents on energy-independent high-efficiency corrosion prevention technology for large-scale pipelines for natural gas supply. In this patent technology trend study, Korean, US, Japanese, and European patents filed, published, and registered by June 2018 were analyzed, and a technical classification system and classification criteria were prepared through expert discussion. To use fuel cells as an external power source to prevent the corrosion of natural gas large-scale pipelines, it is believed that rights can be claimed using an energy control system and methods having 1) branch structures of pipeline and facility designs (decompressor/compressor/heat exchanger) and 2) decompression/preheating and pressurization/cooling technology of high pressure natural gas.

A Study on the Performance Improvement of ta-C Thin Films Coating on Tungsten Carbide(WC) Surface for Aspherical Glass Lens by FCVA Method Compared with Ir-Re coating (Ir-RE 코팅 대비 자장여과필터방식을 이용한 비구면 유리 렌즈용 초경합금(WC)표면의 ta-C 박막 코팅 성능 개선 연구)

  • Jung, Kyung-Seo;Kim, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.27-36
    • /
    • 2019
  • The demand for a low dispersion lens with a small refractive index and a high refractive index is increasing, and accordingly, there is an increasing need for a releasable protective film with high heat resistance and abrasion resistance. On the other hand, the optical industry has not yet established a clear standard for the manufacturing process and quality standards for mold-releasing protective films used in aspheric glass lens molding. Optical lens manufacturers treat this technology as proprietary information. In this study, an experiment was conducted regarding the optimization of ion etching, magnetron, and arc current at each source and filter part, and bias voltage in FCVA (filtered cathode vacuum arc)-based Ta-C thin film coatings. This study found that compared to iridium-rhenium alloy thin film sputtering products, the coating conditions were improved by approximately 50%, 20%, and 40% in terms of thickness, hardness, and adhesive strength of the film, respectively. The thin-film coating process proposed in this study is expected to contribute significantly to the development and utilization of glass lenses, which will help enhance the minimum mechanical properties and quality of the mold-release thin film layer required for glass mold surface forming technology.

Membrane-based Direct Air Capture Technologies (분리막을 이용한 공기 중 이산화탄소 제거 기술)

  • Yoo, Seung Yeon;Park, Ho Bum
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.173-180
    • /
    • 2020
  • As the demand for fossil fuels continues to increase worldwide, carbon dioxide (CO2) concentration in the air has increased over the centuries. The way to reduce CO2 emissions to the atmosphere, carbon capture and sequestration (CCS) technology have been developed that can be applied to power plants and factories, which are primary emission sources. According to the climate change mitigation policy, direct air capture (DAC) in air, referred to as "negative emission" technology, has a low CO2 concentration of 0.04%, so it is focused on adsorbent research, unlike conventional CCS technology. In the DAC field, chemical adsorbents using CO2 absorption, solid absorbents, amine-functionalized materials, and ion exchange resins have been studied. Since the absorbent-based technology requires a high-temperature heat treatment process according to the absorbent regeneration, the membrane-based CO2 capture system has a great potential Membrane-based system is also expected for indoor CO2 ventilation systems and immediate CO2 supply to smart farming systems. CO2 capture efficiency should be improved through efficient process design and material performance improvement.

Physical and Sensory Evaluation of Tenebrio molitor Larvae Cooked by Various Cooking Methods (조리방법별 갈색거저리 유충의 물리적 및 관능적 특성)

  • Baek, Minhee;Yoon, Young-Il;Kim, Mi Ae;Hwang, Jae-Sam;Goo, Tae-Won;Yun, Eun-Young
    • Korean journal of food and cookery science
    • /
    • v.31 no.5
    • /
    • pp.534-543
    • /
    • 2015
  • Recently, the Tenebrio molitor larva was recognized as a novel food ingredient by the Ministry of Food and Drug Safety in Korea. Accordingly, we investigated its physical and sensory characteristics to establish the cooking conditions that may increase the demand of T. molitor larvae as a food. In this study, T. molitor larvae were cooked by various methods such as hot air dry, oven-broil, roast, pan fry, deep fry, boil, steam, and by microwave. In the physical evaluation of texture, the hardness and fracturability values were highest when larvae were cooked in the microwave. The adhesiveness, springiness, and chewiness values were highest when larvae were boiled. Boiled and steamed larvae had the highest lightness (L value), while oven-broiled larvae had the highest redness (a value) and yellowness (b value) values. Sensory evaluations assessed the appearance, aroma, flavor, and texture of cooked T. molitor larvae. Steamed and boiled larvae sizes were significantly large and the form was well preserved similar to fresh larvae. The moisture heat cooked (steamed and boiled) T. molitor larvae had the aroma and flavor of steamed corn, canned pupa, and boiled mushroom. In case of oven-broiled T. molitor larvae, the aroma and flavor of mealworm oil, seafood, sweet and roasted sesame were higher than in those cooked by other methods. In texture among sensory evaluation, the hardness and crispiness were the highest in the hot air dried and oven-broiled larvae, whereas juiciness was significantly higher in the boiled and steamed. Accordingly, we suggest that oven-broiled T. molitor larva will be prefered by consumer, due to its the rich aroma and flavor.

A Study for Polyol-in-Oil Type Lip Makeup Cosmetics with Natural Pigments (천연색소를 함유하는 유중폴리올(Polyol-in-Oil) 립메이크업 제품에 관한 연구)

  • Lee, Dong Won;Kim, Young Ho;Jung, Eun Ji;Lee, Sang Gil;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.1
    • /
    • pp.65-73
    • /
    • 2013
  • Lip make-up products can be easily taken into body with food. For this reason, those products are requires to meet lots of qualifications compared with other cosmetic products. In addition, concerns about safety on synthesized tar pigments is constantly issued. Thus, demand of natural pigments is gradually increased and many kinds of natural pigments have been developed. However, there are some problems when natural pigments are applied to cometic products instead of synthetic ones. There is a reason that most of natural pigments consist of hydrophilic materials of sort of anthocyanin, but the existing lip make-up products is anhydrous oil dispersion type without water consisting oil and wax. Therefore, when watersoluble natural pigments are applied to anhydrous lip make-up products, color expression is lower and phase separation occurs due to the instability of the product. In addition, natural pigments have disadvantages that they can easily change by pH, heat and sunlight. There are troubles of stability because it is not easy to adjust for these factors in case of anhydrous forms. Aim of study is to develop lip make-up products which have not only safe to human but being high in expression of color by using natural pigments and securing stability of colorant as natural pigments are offered to polyol in oil emulsion. Then, lip make-up products which have heavy moisture while having not dryness that is created when the moisture evaporates are developed.

A Study of King Kyung-jong's strange diseases according to Medical records from 『The Daily Records of Royal Secretariat of Chosun Dynasty』 (『승정원일기(承政院日記)』의안(醫案)을 통해 살펴본 경종(景宗)의 기질(奇疾)에 대한 이해)

  • Kim, Dong-Ryul;Kim, Namil;Cha, Wung-Seok
    • The Journal of Korean Medical History
    • /
    • v.26 no.1
    • /
    • pp.41-53
    • /
    • 2013
  • In this paper, King Kyung-Jong's strange diseases which had been exacerbated by the Sinim-Sahwa(辛壬士禍) are researched and discussed. The subject will be described mostly based on health and medical records from "The Daily Records of Royal Secretariat of Chosun Dynasty(承政院日記)" and "The Annals of the Choson Dynasty(朝鮮王朝實錄)". Sinim-Sahwa had occurred for two years. It is thought that the beginning of it was 'a controversy on a proclamation of a crown prince, Yeon Ing Goon'. At the first year of Kyung-Jong's ruling, August 21, the No-Ron demanded a king's heir be decided as soon as possible, the king asked Yeon Ing Goon as his successor because of his 'strange diseases'. In October of the same year, the conflict between No-Ron and So-Ron parties reached its peak after a dispute about 'regency from behind the veil for the crown prince' at that time. Kyung-jong added that he had a mysterious and heavy disease and there was little hope to recover from it. Some opposing courtiers emphasized the king was in his good health and there weren't any actual diseases he suffered. But Kyung-Jong stubbornly persisted the diseases he had were so heavy that he couldn't get well readily. In detail, he announced his disease had so deeply rooted in internal organs that he could feel some kind of heat and fire arousal form his heart, then rage and resent soaring. Eventually, on 16th, the No-Ron party followed the king's demand, thus the king's health and illness condition itself was gradually getting off the subject. It seems that Kyung-jong's strange diseases was hwa-byung(火病). His symtoms are similar to the symtoms of hwa-byung. Environment he lived, was enough to cause hwa-byung. as a result, Sinim-Sahwa was the event what his hwa(火) was erupted.

Review on the Recent Membrane Technologies for Pressure Retarded Osmosis (압력지연삼투를 위한 최근 분리막 기술에 관한 총설)

  • Jeon, Sungsu;Patel, Rajkumar;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.31 no.4
    • /
    • pp.253-261
    • /
    • 2021
  • Solutions to water pollution, global warming, and climate change have been currently discussed. Pressure retarded osmosis (PRO) using a difference in salt concentration between two fluids is proposed to meet the demand for clean water and produce eco-friendly energy. Although PRO has been researched continuously, it has not been commercialized yet due to limitations such as lack of technology and the high price of membranes. Meanwhile, the membrane is one of the most significant parts of the PRO engine and salinity gradient power (SGP) technology. Research continues to technologically develop graphene oxide membranes and nanocomposite membranes used in salinity gradient power generation. Studies on efficient membranes, solvents, and solutes are active to enable high energy efficiency of the osmotic heat engine even at low temperatures of waste. Studies have been conducted on reducing internal concentration polarization and increasing power density by using membranes with balanced permeability and selectivity. In this review, dealing with these studies, we discuss the types of PRO membranes, theoretical modeling of technologies through efficient membranes, and other technologies to develop the process efficiency.

A study on the comparative test of chemical and thermal properties of virgin and recycled PET products (버진 및 리사이클 PET 제품의 화학적·열적 특성 비교시험에 관한 연구)

  • Kim, Kyoung Pil;Seo, Kyung Jin;Park, Soo-Yong;Chung, Ildoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.33-39
    • /
    • 2021
  • As the interest and demand in the recycled yarn field has increased rapidly worldwide, domestic companies are also promoting research and development and business on recycled yarn. The chemical and thermal properties of four types of virgin and recycled PET samples from A and B company, which are the leading domestic companies in the recycled polyester yarn business, were confirmed through infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC). Virgin and recycled PET from two companies were compared. FT-IR spectroscopy revealed the typical spectra of PET for both companies and a different peak at 872 cm-1. DSC confirmed that the melting point and crystallization temperature of recycled PET were lower than those of virgin PET. These results indicate that small amounts of contaminants are an important parameter affecting the thermal properties of recycled PET. In the DSC results after seven repeats of the heating and cooling processes, all four samples showed that a lower melting point, crystallization temperature, and low heat flow intensity increased with increasing number of cycles. The results of melting and crystallization enthalpy also showed similar patterns.

Development and Validation of Digital Twin for Analysis of Plant Factory Airflow (식물공장 기류해석을 위한 디지털트윈 개발 및 실증)

  • Jeong, Jin-Lip;Won, Bo-Young;Yoo, Ho-Dong;Kim, Tag Gon;Kang, Dae-Hyun;Hong, Kyung-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.1
    • /
    • pp.29-41
    • /
    • 2022
  • As one of the alternatives to solve the problem of unstable food supply and demand imbalance caused by abnormal climate change, the need for plant factories is increasing. Airflow in plant factory is recognized as one of important factor of plant which influence transpiration and heat transfer. On the other hand, Digital Twin (DT) is getting attention as a means of providing various services that are impossible only with the real system by replicating the real system in the virtual world. This study aimed to develop a digital twin model for airflow prediction that can predict airflow in various situations by applying the concept of digital twin to a plant factory in operation. To this end, first, the mathematical formalism of the digital twin model for airflow analysis in plant factories is presented, and based on this, the information necessary for airflow prediction modeling of a plant factory in operation is specified. Then, the shape of the plant factory is implemented in CAD and the DT model is developed by combining the computational fluid dynamics (CFD) components for airflow behavior analysis. Finally, the DT model for high-accuracy airflow prediction is completed through the validation of the model and the machine learning-based calibration process by comparing the simulation analysis result of the DT model with the actual airflow value collected from the plant factory.

Recent Development of Thermo-chemical Conversion Processes with Fluidized Bed Technologies (유동층 공정을 이용한 열화학적 전환 공정의 최신 개발 동향)

  • Hyun Jun Park;Seung Seok Oh;Olusola Nafiu Olanrewaju;Jester Lih Jie Ling;Chul Seung Jeong;Han Saem Park;See Hoon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.8-18
    • /
    • 2023
  • Increasing of energy demand due to the rapid growth of global population and the development of world economy has inevitably resulted in the continuously increase of fossil fuel usage in the world. However, highly dependence on fossil fuels has necessarily brought about critical environmental issues and challenges such as severe air pollutions and rapid global warming. In order to settle these environmental and energy problems, clean energy generations in the conventional combustion processes have widely adapted in the world. In particular, novel thermochemical conversion processes such as pyrolysis and gasification have rapidly been applied for generating clean energy. Fluidized bed technologies having advantages such as various fuel use, easy continuous operation, high heat and material transfer, isothermal operation, and lower operation temperature are widely adopted and used because they are suitable for thermochemical energy conversion. The latest research trends and important findings in the thermo-chemical conversion process with fluidized bed technologies are summarized in this review. Also, the need for research such as layered materials and substances to reduce fine dust (biomass, natural resource waste, etc.) was suggested. Through this, it is intended to increase interest and understanding in fluidized bed technology and to present directions for solving future challenges in fluidized bed process technology development.