To overcome the mismatch of heat demand and heat supply is important as considering point on heat utilizing aspects in Urban area. At this point, It need to know the plan of heat networks on the heat balance aspects. The purpose of this study is to know the method of heat evaluation on heat network around costal area. It is need to building uses to calculate the amounts of heat demand. 25 different types of building uses were supplied, but it was reclassified 10 types and calculated the amounts of heat demand in the costal area. The results was described on the area with GIS mapping.
High level of accuracy in forecasting heat demand of each district is required for operating and managing the district heating efficiently. Heat demand has a close connection with the demands of the previous days and the temperature, general demand forecasting methods may be used forecast. However, there are some exceptional situations to apply general methods such as the exceptional low demand in weekends or vacation period. We introduce a new method to forecast the heat demand to overcome these situations, using the linearities between the demand and some other factors. Our method uses the temperature and the past 7 days' demands as the factors which determine the future demand. The model consists of daily and hourly models which are multiple linear regression models. Appling these two models to historical data, we confirmed that our method can forecast the heat demand correctly with reasonable errors.
The heat demand prediction is an essential issue in management of district heating system. Without an accurate prediction through the lead-time period, it might be impossible to make a rational decision on many issues such as heat production scheduling and heat exchange among the plants which are very critical for the district heating company. The heat demand varies with the temperature as well as the time nonlinearly. And the parametric specification of the heat demand model would cause a misspecification bias in prediction. A nonparametric model for the short-term heat demand prediction has been developed as an alternative to avoiding the misspecification error and tested with the actual data. The prediction errors are reasonably small enough to use the model to predict a few hour ahead heat demand.
본 연구에서는 기존 열수요 예측 시스템이 공휴일과 같은 특정 일자의 열수요 예측율이 저하되는 문제점을 개선하기 위해 새로운 모델을 제안한다. 제안된 모델은 사계절 혼합형 신경망 모델(Four Season Mixed Heat Demand Prediction Neural Network Model)로서 열수요 예측율 상승하였고, 특히 예측일 유형별(평일/주말/공휴일) 열수요 예측율이 크게 증가하였다. 제안된 모델은 다음과 같은 과정을 통해 선정되었다. 특정 계절에 예측일 유형별로 고른 오차를 갖는 모델을 선정하여 전체 예측 모델을 구성한다. 학습 시간의 단축과 과도학습을 방지하기 위해 구조적으로 단순화된 서로 다른 4개의 모델을 각각 학습한 후에 다양한 조합을 통해 최적의 예측 오차를 보여주는 모델을 선정하였다. 모델의 출력은 예측일의 24시간의 시간대별 열수요이며 총합은 일일 총열수요이다. 이 예측값을 통해 효율적인 열공급 계획을 수립 할 수 있으며, 목적에 따라 출력값을 선택하여 활용할 수 있다. 제안된 모델의 일일 열 총수요 예측의 경우, 전체 MAPE(Mean Absolute Percentage Error, 평균 절대 비율 오차)가 개별 모델의 5.3~6.1%에서 5.2%로 향상되었고, 공휴일 열수요예측은 4.9~7.9%에서 2.9%로 크게 개선되었다. 본 연구에서는 한국 지역난방공사에서 제공한 특정 아파트 단지의 34개월 분량의(2015년 1월~ 2017년10월) 시간단위 열수요 데이터를 활용하였다.
지역난방 시스템은 서비스 지역 내 열 수요처들을 네트워크로 연결하여 중앙의 저비용 고효율 열 생산설비를 통해 열을 공급하는 에너지 시스템이다. 효율적인 열 공급 시시스템 운영을 위하여 지역 내 열 수요를 정확하게 예측하고 이를 바탕으로 열 생산 계획을 최적화하는 것이 중요하다. 본 연구에서는 지역 내 열수요처별 열 사용량 패턴에 대한 빅데이터 정보로 기계실별 실시간 열량계 정보를 반영한 열수요 예측모형을 제시하였다. 기존에도 열 수요예측에 활용되던 지역 전체 열수요 실적 합계와 함께 수요처별로 설치되어 있는 열량계로부터 실시간으로 수집한 개별 열수요 실적을 예측모형에 반영함으로써 열 수요처별로 상이한 열사용 패턴을 반영한 열 수요 예측이 가능할 것으로 기대된다. 지역난방 기업의 실제 열수요 실적을 바탕으로 열수요 예측 정확도를 측정한 결과 계절에 상관없이 기본 모형 대비 열량계 빅데이터를 반영할 경우 정확도가 올라가는 것으로 분석되었으며, 향후 열수요처별 다양한 형태의 데이터를 추가로 반영함으로써 열 수요 예측 정확도 향상이 가능할 것으로 예측된다.
본 연구에서는 지역난방시스템 열수요 예측의 정확도 향상을 위하여 판교지역을 대상으로 지역난방 수요예측 주요인자 중 열수요 실적을 기존의 열원시설 열공급정보 대신 변경된 사용자시설 열판매정보로 적용하여 혹한기를 포함한 5개월 동안의 수요를 예측하고 실적값을 기준으로 기존 방식과 정확도를 비교하였다. 열수요가 피크를 이루는 혹한기 1주일(2018.01.08.~01.14) 동안 실적값을 기준으로 기존 및 변경방식 예측값의 시간대별 차이를 비교한 결과 상대오차가 7%에서 3%로 감소되었으며, 2017년 10월부터 2018년 2월까지 5개월에 걸친 일일 누적 열수요에 있어서도 실적값 대비 기존 및 변경 방식 예측값의 상대오차는 각각 9%와 4%로 변경방식의 상대오차가 감소하였다. 또한, 열수요 특성이 차별화되는 주말의 경우에도 예측값의 상대오차는 기존 방식 10%에서 변경 방식 5%로 일관성 있게 감소함을 확인할 수 있었다.
This paper develops methodology in order to consider CHP(Combined Heat and Power) capacity in the Basic Plan of Long Term Electricity Supply & Demand. We develop generating cost of CHP considering electric and heat. Also we develop mixed load duration curve which includes the electric load and heat load and then apply CHP capacity to SCM(Screening Curve Method) considering CHP feature. Accordingly, it decide the optimal CHP capacity in the Basic Plan of Long Term Electricity Supply & Demand. Also, We perform the sensitivity analysis according to cost variation.
특정 지역의 고객을 대상으로 열을 공급하는 지역난방 서비스의 안정적인 운영을 위해서는 단기간의 미래 수요를 보다 정확하게 예측하고, 효율적인 방법으로 생산 및 공급하는 것이 무엇보다 중요하다. 그러나 열 소비에 영향을 미치는 요소가 매우 다양할 뿐만 아니라 개별 소비자 및 지역적 특성에 따라 소비 형태가 달라지기 때문에 일반적인 상황에도 적용될 수 있는 범용적 열 수요 예측 모형을 개발하는 것은 매우 어렵다. 따라서 본 연구에서는 실시간으로 확보할 수 있는 제한적인 정보만을 바탕으로 딥러닝 기법을 활용한 수요예측 모형을 개발하고자 한다. 해당 지역의 외기온도와 날짜로만 구성된 과거 데이터를 입력 변수로 하여 텐서플로의 인공신경망을 학습시키는 방법으로 수요 예측 모형을 개발하였다. 기존의 회귀분석 기법을 통해 예측된 수요의 정확도와의 비교를 통해 제안된 모델의 성능을 평가하였다. 본 연구의 열 수요 예측 모델은 단기적 수요 예측을 위해 실시간으로 확보할 수 있는 제한적인 변수만으로도 수요 예측의 정확도를 높일 수 있음을 보였다. 나아가 개별 지역에서는 지역적 특수성을 추가하여 수요 예측 정확도를 높이는 데 활용할 수 있을 것이다.
산업단지와 같은 공장이 많이 밀집되어 있는 곳에서 열은 많이 버려지고 있다. 본 연구는 폐열을 신속하게 이용하기 위하여 폐열을 발굴하여 실재 사업 실행에 이르기 전까지의 내용을 단계적으로 나타내었으며 사업에 직접 적용할 수 있는 폐열 이용방안을 제시하였다. 특히, 열공급처와 수요처의 열공급 및 수요조사를 통하여 상호간의 열 이용을 분석하였으며 열공급 수송의 기본설계를 하였고 열 수요처에 공급하는 열에 대하여 경제성 및 타당성을 검토하였다. 이에 따른 실증분석에 수요처 열사용 투자회수기간은 1,909년으로 비교적 짧은 것으로 나타났다.
한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
/
pp.146-152
/
2000
As an improvement in the standard of living and economic growth the demand for air conditioning equipment is increasing rapidly. Nowadays air conditioning equipments are being used for industry large building house and car. Thess equipments was concentrated on improving heat efficiency of economic aspects while they design heat exchanger for cooling and heating,. These air conditioning equipments using heat exchanger cause a discomfort to user due to generating mist at the beginning of operating. Therefore the user demand air of high class and quality. In this experimental study to acquire elementary data for development of heat exchanger which be able to supply air of high quality that is to say possess a restraint effect of mist generation. We estimate an effect on cooling plate kind supply air velocity supply air temperature cooled plate temperature and supply air relative humidity which have an influence on outlet air condition of heat exchanger.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.