• Title/Summary/Keyword: Heat chamber

Search Result 735, Processing Time 0.027 seconds

CFD on the possibility of performance evaluation of heat pump outdoor unit in duct-type constant temperature chamber (덕트형 항온챔버에서 히트펌프 실외기의 성능평가 가능성에 대한 CFD)

  • Kim, Jong-Ryeol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.116-121
    • /
    • 2021
  • A lot of research is being done to develop a high-efficiency heat pump to save energy, and research to reduce or eliminate the phenomenon of frost occurring in the outdoor unit coil is also being conducted at the same time. A curved constant temperature chamber was constructed that can be tested under the same conditions as in the natural state so that the research can be conducted in which frost does not occur on the outdoor unit of the heat pump regardless of the season. Simulations were performed to verity whether such a curved constant temperature chamber has feasibility as an experimental device. For CFD conditions, the length of the straight duct in front of the outdoor unit located in the duct-type constant temperature chamber was 1, 5, 10 and 15 times the diameter of the duct. As a result, it was found that a straight space must be secured 10 times the diameter of the duct.

Development of Design Program of Regeneratively Cooled Combustion Chamber (재생냉각 연소실 설계 프로그램 개발)

  • Cho, Won-Kook;Seol, Woo-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.102-110
    • /
    • 2004
  • A design code validated against the thermal analysis results of CFD and published RTE code for a regeneratively cooled combustion chamber has been developed. The major function of the code is to predict the regenerative cooling performance and stress of the chamber wall. Adopted are the empirical correlation for the evaluation of the heat transfer coefficient of hot gas and coolant, and theoretical formula for the fin effect of the channel rib. The hot-gas-side wall temperature from the present code shows 100 K difference at most compared to RTE results. It shows less than 10 % difference for the heat flux thrall through the chamber wall and hot-gas-side convective heat transfer coefficient. The major cause of the wall temperature difference is due to the underestimation of the fin effect of the channel rib.

Experimental Study on the Physical and Mechanical Properties of a Copper Alloy for Liquid Rocket Combustion Chamber Application (액체로켓 연소기용 구리합금의 열/기계적 특성에 관한 실험적 연구)

  • Ryu, Chul-Sung;Baek, Un-Bong;Choi, Hwan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1494-1501
    • /
    • 2006
  • Mechanical and physical properties of a copper alloy for a liquid rocket engine(LRE) combustion chamber liner application were tested at various temperatures. All test specimens were heat treated with the condition they might experience during actual fabrication process of the LRE combustion chamber. Physical properties measured include thermal conductivity, specific heat and thermal expansion data. Uniaxial tension tests were preformed to get mechanical properties at several temperatures ranging from room temperature to 600$^{\circ}C$. The result demonstrated that yield stress and ultimate tensile stress of the copper alloy decreases considerably and strain hardening increases as the result of the heat treatment. Since the LRE combustion chamber operates at higher temperature over 400$^{\circ}C$, the copper alloy can exhibit time-dependent behavior. Strain rate, creep and stress relaxation tests were performed to check the time-dependent behavior of the copper alloy. Strain rate tests revealed that strain rate effect is negligible up to 400$^{\circ}C$ while stress-strain curve is changed at 500$^{\circ}C$ as the strain rate is changed. Creep tests were conducted at 250$^{\circ}C$ and 500$^{\circ}C$ and the secondary creep rate was found to be very small at both temperatures implying that creep effect is negligible for the combustion chamber liner because its operating time is quite short.

The Basic Study of Internal Temperature Variation in a 3D Printer(FDM-type) Chamber (3D 프린터의 챔버 내부온도 변화에 대한 연구)

  • Shin, Geun-Sik;Kweon, Hyun-ku;Kang, Yong-Goo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.33-40
    • /
    • 2019
  • FDM 3D printers have become widespread, and investment in the 3D printer industry is increasing. Therefore, many 3D printers are released and the functions of products are emphasized. However, to lower unit prices, open-type 3D printers are sold in kit form, and their performance is very low. If the 3D printer has many heat sources and is sealed, there is the possibility that the main accessories (the main board, power supply, and motor) will be damaged by trapped heat. At the same time, if the ambient temperature is low due to the properties of the material, the output quality deteriorates. In this study, we analyzed the temperature rise of the main accessories and the quality of the output by the heat bed when a chamber was added to an open-type 3D printer. We also compared the quality of the output due to the air flow with the temperature rise of the main accessories. Moreover, we found the optimal value. As a result of the quality analysis, it was finally confirmed that the case with the chamber at $95^{\circ}C$ was the best for the printing condition. In addition, in the absence of the chamber, the bending of the specimen was found to be large, and in the case of the chamber, the degree of bending was slightly decreased by 0.05 mm.

A Study on the Characteristics of Heat transfer of Fire Clay with Microwave Heating (MICROWAVE 가열에 의한 내화 점토의 열전달 특성 연구)

  • Lee, S.J.;Kim, Y.J.;Kim, C.J.;Sung, K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.202-206
    • /
    • 2001
  • The characteristics of heat transfer on the fire clay with microwave heating are numerically investigated using finite element method. The modelled regular hexahedron chamber($50cm{\times}50cm{\times}50cm$) filled with air consists of vertical heat source and sink walls, a fire clay model, and adiabatic plates at the top and bottom walls. With different geometrical aspect ratios of the fire clay model, the heat energy distribution is throughly investigated. The optimal shape of the fire clay for given chamber geometry and microwave power is analyzed.

  • PDF

A Computer Simulation of the Combustion and Flueway of a Pulse Combustion Water Heater (맥동연소온수기의 연소실과 노도의 컴퓨터 시뮬레이션)

  • Kang, Kun;Shin, Sei-Kun;Kim, Min-Sik
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.64-72
    • /
    • 1989
  • In this study, the computer simulation for the heat transfer in pulse combustion water heater is performed. The attention is focused to the effects of the installation of corebuster in the flue tube on heat transfer. The energy equations are established for both wall and gas side in the combustion chamber, flue way, exhaust chamber and muffler, and the numerical calculation is executed. Zone method takes longer computer calculation time compared with semi-zone method. Semi-zone method is chosen for numerical calculation. As a result of this study, it is found that the installation of the core buster in flue tube increases total heat transfer. It is also found that the total heat transfer is increased with the increasing of the ratio of the cross section area of corebuster to that of the flue tube. However, the heat transfer effect is negligible for the area ratio above 0.5.

  • PDF

A Study on the Characteristics of Heat Energy Distribution of Fire-Proof Clay with Microwave Heating Drying (MICROWAVE 가열 건조에 의한 내화 점토의 열에너지 분포 특성 연구)

  • Lee, S.J.;Kim, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.752-757
    • /
    • 2001
  • The characteristics of heat energy distribution on the fire-proof clay with microwave heating drying are numerically investigated using finite element method. The modelled regular hexahedron chamber$(50cm\times50cm\times50cm)$ filled with air consists of vertical heat source and sink walls, a fire-proof clay model, and adiabatic plates on the top and bottom walls. With different geometrical aspect ratios of the fire-proof clay model, the heat energy distribution is throughly investigated. The model gave a good prediction of the microwave heating characteristics of fire-proof clay. The optimal shape of the fire-proof clay for given chamber geometry and microwave power is analyzed.

  • PDF

Transient Analysis on Heat Transfer of Rocket Engine Combustion Chamber Considering Film-cooling (막냉각을 고려한 로켓엔진 연소실 열전달 비정상 해석)

  • Ha, Seong-Up;Moon, Il-Yoon;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.867-868
    • /
    • 2011
  • Transient Analysis on heat transfer of rocket engine combustion chamber and wall temperature variation was carried out, especially, calculations of LOx/kerosene rocket engine with/without fuel film-cooling were conducted. Convective and radiative heat flux inside combustion chamber wall were calculated by the empirical equations for rocket engine combustion, and conduction of wall interior was calculated by numerical method with 2D axisymmetric grid. In this calculations the transient variations of wall temperature, the location changes of peak temperature and so on affected by film-cooling were analyzed.

  • PDF

The Analysis of the Heat Transfer Characteristic in a PDP Ventilation Chamber (PDP용 배기로내 열전달 현상에 관한 해석)

  • Park, Hyung-Gyu;Chung, Jae-Dong;Kim, Charn-Jung;Lee, Joon-Sik;Park, Heui-Jae;Cho, Young-Man;Cho, Hae-Kyun;Park, Deuk-Il
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.385-391
    • /
    • 2000
  • An analysis of the heat transfer in a PDP ventilation chamber has been conducted to investigate the required heat curve and temperature uniformity of the panels. Firstly, experiment in a test chamber has been carried out and compared with the unsteady 3D numerical simulation. Reasonable agreement was found, which suggested that the employed numerical model had its credibility in an actual PDP ventilation process. On this ground, tact-type heating/cooling system was analyzed. The panel temperature was more uniform in the $40^{\circ}C$ tact-type system than in the $80^{\circ}C$ one. Comparison of full simulation of a cart and simplified simulation of one panel shows the panel pitch, which is closely related to a production rate, can be also predicted.

  • PDF

Analysis of Temperature and Total Heat of Heated Glass through Experimental Measurement and Three-Dimensional Steady-State Heat Transfer Analysis (실측실험과 3차원 정상상태 열전달 해석을 통한 발열유리의 온도 및 전열량 분석)

  • Lee, Do-Hyung;Yoon, Jong-Ho;Oh, Myeong-Hwan
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.111-116
    • /
    • 2015
  • Heat loss from windows and condensation occuring on its surface due to its lower insulation value causes much discomfort to occupants. In this study, Heated glass was used to make a basic study on prevention of condensation on glass surface for its heating functionality through experimental measurement and simulation analysis of total heat flux on the interior and exterior surface of glass. Error between experimental results and three dimensional steady-state heat transfer analysis were caused firstly, beacuse in the experimental chambers, cold chamber and steady temperature and humidity chamber, air temperature setting was not constant but rather ON/OFF control, and secondly, due to error rate in heat flux meter due to heat flux direction even in stable conditions.