• Title/Summary/Keyword: Heat and Mass Transfer Analogy

Search Result 60, Processing Time 0.02 seconds

Effect of Horizontal Pitch-to-Diameter Ratio on the Natural-Convection Heat Transfer of Two Staggered Cylinders (엇갈리게 배열된 두 개의 수평관에서 수평 피치-직경비에 따른 자연대류 열전달 영향)

  • Chae, Myeong-Seon;Heo, Jeong-Hwan;Chung, Bum-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.259-268
    • /
    • 2012
  • This study measured the natural-convection heat transfer of two vertically staggered cylinders with varying vertical pitch-to-diameter ($P_v$/D) and horizontal pitch-to-diameter ($P_h$/D) ratios. The measured heat-transfer rates for the lower cylinder agreed well with the existing heat-transfer correlations for a single cylinder. At the smallest $P_v$/D, the rising plume from the lower cylinder provides the upper cylinder with a preheated flow, and the heat-transfer rates of the upper cylinder decrease, but increase very sensitively with $P_h$/D. However, at the largest $P_v$/D, the velocity effect dominates, and the heat-transfer rates of the upper cylinder are larger than that of a single cylinder, and decrease less sensitively with $P_h$/D. Even if $P_h$/D is increased, the heat-transfer rate of the upper cylinder is higher than that of the lower cylinder because of the chimney and side flow effects. This work expanded the flow ranges to turbulent flows. The cupric acid-copper sulfate ($H_2SO_4-CuSO_4$) electroplating system was adopted for the measurements of the mass-transfer rates instead of the heat-transfer experiments based on the analogy concept. The measurements were made by varying $P_v$/D (1.02-5) and $P_h$/D (0-2) in both laminar and turbulent flows. The Rayleigh number ranged from $1.5{\times}10^8$ to $2.5{\times}10^{10}$, and the Prandtl number was 2,014.

An Experimental Investigation on Flow Field in a Pipe with Sinusoidally Wavy Surface by PIV (PIV를 이용한 3차원 파형관 내부 유동장의 실험적 연구)

  • 김성균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.368-373
    • /
    • 2004
  • A flow field in a passage with periodically converging-diverging cross-section is investigated experimentally by PIV measurement. A tube with a sinusoidally wavy cross section is one of several devices employed for enhancing the heat and mass transfer efficiency due to turbulence promotion and unsteady vortical motion. While the numerical flow visualization results have been limited to the fully developed cases, existing experimental results of this flow were simple qualitative ones by smoke or dye streak test. Therefore, the main purpose of this study is to produce quantitative flow data for fully developed and transient flow regime by the Correlation Based Correction PIV (CBC PIV) and to conjecture the analogy between flow characteristics and heat transfer enhancement with low pumping power. Another purpose of this paper is to examine the onset position of the transition and the global mixing, which results in transfer enhancement. At Re=2000, evidences of the global mixing are captured at 2.5 wavy module through the variation of RMS values and instantaneous velocity plot.

Assessment of CUPID code used for condensation heat transfer analysis under steam-air mixture conditions

  • Ji-Hwan Hwang;Jungjin Bang;Dong-Wook Jerng
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1400-1409
    • /
    • 2023
  • In this study, three condensation models of the CUPID code, i.e., the resolved boundary layer approach (RBLA), heat and mass transfer analogy (HMTA) model, and an empirical correlation, were tested and validated against the COPAIN and CAU tests. An improvement on HMTA model was also made to use well-known heat transfer correlations and to take geometrical effect into consideration. The RBLA was a best option for simulating the COPAIN test, having mean relative error (MRE) about 0.072, followed by the modified HMTA model (MRE about 0.18). On the other hand, benchmark against CAU test (under natural convection and occurred on a slender tube) indicated that the modified HMTA model had better accuracy (MRE about 0.149) than the RBLA (MRE about 0.314). The HMTA model with wall function and the empirical correlation underestimated significantly, having MRE about 0.787 and 0.55 respectively. When using the HMTA model, consideration of geometrical effect such as tube curvature was essential; ignoring such effect leads to significant underestimation. The HMTA and the empirical correlation required significantly less computational resources than the RBLA model. Considering that the HMTA model was reasonable accurate, it may be preferable for large-scale simulations of containment.

Influence of the Geometry on the Natural Convection Heat Transfer inside a Vertical Cylinder (수직 원형관내 자연대류 열전달에서 기하구조의 영향)

  • Ohk, Seung-Min;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.97-103
    • /
    • 2015
  • Natural convection heat transfer rates in vertical pipes were measured varying the diameter, length, and roughness of vertical cylinder. To achieve high Rayleigh number with relatively small test rig, mass transfer experiments instead of heat transfer were performed based on the analogy. Prandtl number was 2,014. The length of vertical cylinder was 0.1m, 0.3m, and 0.5m, which correspond to GrL $4.2{\times}10^7$, $1.1{\times}10^9$, and $5.5{\times}10^9$. To each length of vertical cylinder, the heat transfer rates were measured varying the iameter 0.005m, 0.01m, and 0.03m. The heat transfer rate for a short length pipe(0.1m) agreed with the prediction from Le Fevre correlation developed for a vertical plate for all diameter. The heat transfer rate decreases as the diameter and the length of the pipe increases. The heat transfer rate inside of vertical cylinder is affected by roughness only for a laminar flow regime.

Experimental Study on Local Convective Mass Transfer From a Circular Cylinder in Uniform Shear Flow (균일 전단류내에 있는 원봉주위의 국소 대류 물질 전달에 관한 실험적 연구)

  • 류명석;성형진;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.789-798
    • /
    • 1989
  • A naphthalene sublimation technique based on the heat/mass transfer analogy is used to investigate the circumferential mass transfer from a circular cylinder in an approaching uniform shear flow. Experiments are performed in a wind tunnel (450*450m $m^{2}$ with a shear flow generator which is specially manufactured for generating variable shear rates(S). The effects of an approaching shear flow are correlated with mass transfer coefficients. It is found that the local mass transfer rate on a circular cylinder is characterized with the shear parameter $K^{d}$ defined as Sd/ $U^{c}$ , where d is the radius of cylinder and $U^{c}$ is the approaching velocity at the center of cylinder. The angle on the corresponding to minimum Sherwood number is approximately proportional to the shear parameter on an upper and down number is approximately proportional to the shear parameter on an upper and down circular cylinder (0< $K^{d}$ <0.132). Changes on the averaged mass transfer rate are not significant for small $K^{d}$ , which are slightly proportional to K$d^{2}$ but the local mass transfer rates are significantly changed with the approaching shear flow.

Study on Laminar Mixed Convection of Developing Flow in Vertical Pipe (수직관내 발달 유동의 층류혼합대류 연구)

  • Ko, Bong-Jin;Chung, Bum-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.481-489
    • /
    • 2010
  • Experiments on laminar mixed convection in a vertical pipe were performed for the Re range 1,000-3,000, the $Gr_H$ range $10^5-10^8$, the Pr range 2,000-7,000, and aspect ratio range 1-7. Using the analogy concept, heat transfer systems were simulated by mass transfer systems. A cupric acid.copper sulfate electroplating system was adopted as the mass transfer system, and the mass transfer rates were measured. The measured Nu values were far greater than those previously reported because of the large value of pr in this experiment. As the aspect ratio in this study was not sufficiently large for the flow to be fully developed, the test results were similar to those for mixed convection on a vertical plate rather than that inside a long vertical pipe. It was concluded that the behavior of laminar mixed convection of a developing flow in a vertical pipe at a low aspect ratio and low $Gr_H$ is similar to that of laminar mixed convection in the vertical plate. As the aspect ratio and $Gr_H$ increase, the laminar mixed convection phenomena becomes similar to that observed in a fully developed flow in the vertical pipe.

A Preliminary Experiment for Rayleigh-Benard Natural Convection for Severe Accident Condition (중대사고시 노심용융물의 Rayleigh-Benard 자연대류 예비 실험)

  • Moon, Je-Young;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.254-264
    • /
    • 2012
  • Rayleigh-Benard natural convection experiments were carried out as the preliminary experiment to simulate the natural convection of the core melt at the severe accident conditions. This work focused on the influences of plate separation distance(s), the existence of the side walls and crust geometries of upper and lower plates. Based upon the analogy concept, a cupric acid-copper sulfate electroplating system($H_2SO_4-CuSO_4$) was employed as the mass transfer system and measurements were made for $Ra_s$ ranging from $1.06{\times}10^7$ to $2.91{\times}10^{10}$. The test results measured for a single horizontal plate were in good agreement with the correlation reported by McAdams and those for two horizontal plates showed the similar trend to the existing Rayleigh-Benard heat transfer correlations developed by Dropkin and Somerscales, Globe and Dropkin. The measured heat transfer rate decreased with the increasing separation distance between the two plates and became similar to those for a single horizontal plate. Fin arrays mounted on both upper and lower plates enhanced the heat transfer rates. For all cases, the heat transfer rates measured for open side walls are higher than those for closed ones.

The Effect of Pitch-to-Diameter Ratio on Natural Convection Heat Transfer of Two In-Line Horizontal Cylinders (나란히 수직으로 배열된 두 개의 수평관에서 피치-직경비에 따른 자연대류 열전달 영향)

  • Chae, Myeong-Seon;Kang, Gyeong-Uk;Chung, Bum-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.417-424
    • /
    • 2011
  • Natural convection heat transfer experiments from two parallel horizontal cylinders were performed varying the Pitch-to-Diameter ratio (P/D) of 1.02-9 at Sc of 2,014 to 8,334 and $Ra_D$ of $1.5{\times}10^8$ to $4.5{\times}10^{10}$. Mass transfer experiments that are analogous to the heat transfer experiments were performed using copper electroplating system. In all cases, the measured heat transfer rates for the lower cylinder agreed well with the existing heat transfer correlations developed from a single cylinder. For laminar flows, the measured heat transfer rates of the upper cylinder were less than those of the lower cylinder at P/D less than about 1.5. However, as the P/D increased, the heat transfer rates of the upper cylinder increased. For turbulent flows, the heat transfer rates of the upper cylinder were considerably similar to those of the lower cylinder when the P/D is approximately unity. In contrast, as the P/D increased, the heat transfer rates of the upper cylinder were always higher than those of the lower cylinder.

Experiments on Natural Convection on the Outer Surface of a Vertical Pipe by Using Fluids with High Pr Number (높은 Pr 수의 유체를 사용한 수직 원형관 외부의 자연대류 실험)

  • Kang, Gyeong-Uk;Chung, Bum-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.33-42
    • /
    • 2011
  • In this study, we investigated the natural convection on the outer surface of a vertical pipe by performing mass transfer experiments using fluids with high Pr number using the concept of analogy between heat and mass transfer. A cupric acid-copper sulfate electroplating system was adopted as the mass transfer system. Tests were performed for $Ra_H$ numbers from $1.4{\times}10^9$ to $4{\times}10^{13}$, Pr numbers from 2,094 to 4,173, and diameters from 0.005 m to 0.035 m. The test results for laminar flow conditions were in good agreement with the correlations reported by King, Jakob and Linke, McAdam, and Bottemanne, and those for turbulent conditions with the correlations presented by Fouad for a vertical plate and also proved the dependence on Pr numbers. The obtained correlations were $Nu_H=0.55Ra^{0.25}_H$ for laminar and $Nu_H=0.12Ra^{0.28}_HPr^{0.1}$ for turbulent. The transition between laminar and turbulent occurs at $Ra_H$ of about $10^{12}$.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.