• 제목/요약/키워드: Heat and Mass Transfer

검색결과 1,289건 처리시간 0.029초

순수 및 혼합냉매의 유동증발 열전달 상관식 (Correlation of Convective Boiling Heat Transfer in a Horizontal Tube for Pure Refrigerants and Refrigerant Mixtures)

  • 신지영;김민수;노승탁
    • 설비공학논문집
    • /
    • 제8권2호
    • /
    • pp.254-266
    • /
    • 1996
  • Boiling heat transfer coefficients of pure refrigerants(R22, R32, R125, R134a, R290, and R600a) and refrigerant mixtures(R32/R134a and R290/R600a) are measured experimentally and compared with several correlations. Convective boiling term of Chen's correlation predicts experimental data for pure refrigerants fairly well(root-mean-square error of 12.1% for the quality range over 0.2). An analysis of convective boiling heat transfer of refrigerant mixtures is performed for an annular flow to study degradation of heat transfer. Annular flow is the subject of this analysis because a great portion of the evaporator in refrigeration or air conditioning system is known to be in the annular flow regime. Mass transfer effect due to composition difference between liquid and vapor phases, which is considered as a driving force for mass transfer at interface, is included in this analysis. Correction factor $C_F$ is introduced to the correlation for the pure substances through annular flow analysis to apply the correlation to the mixtures. The flow boiling heat transfer coefficients are calculated using the correlation considering nucleate boilling effect in the low quality region and mass transfer effect for nonzazeotropic refrigerant mixtures.

  • PDF

수평관과 헬리컬 코일관내 이산화탄소의 냉각 열전달 특성 (Cooling Heat Transfer Characteristics of Carbon Dioxide in a Horizontal and Helically Coiled Tube)

  • 손창효
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.121-126
    • /
    • 2008
  • The cooling heat transfer coefficient of $CO_2$ (R-744) in a horizontal and helically coiled tube was investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater, evaporator and gas cooler (test section). The test section consists of a horizontal stainless steel tube and hellically coiled copper tube of 4.57 and 7.75 mm. The experiments were conducted at saturation temperature of 100 to $20^{\circ}C$, and mass flux of 200 to $500kg/m^2s$. The test results showed the variation of the heat transfer coefficient tended to decrease as cooling pressure of $CO_2$ increased. The heat transfer coefficient with respect to mass flux increased as mass flux increased. The experimental results were also compared with the existing correlations for the supercritical heat transfer coefficient, which generally underpredicted the measured data. However, the experimental data showed a relatively good agreement with the correlations of Pitla et al. except for the pseudo critical temperature.

연료전지용 판형 막 가습기의 유동방향에 따른 열 및 물질전달 특성에 관한 해석적 연구 (Numerical Study of Characteristic of Heat and Mass Transfer in Planar Membrane Humidifier According to Flow Direction)

  • 윤성호;변재기;최영돈
    • 대한기계학회논문집B
    • /
    • 제37권5호
    • /
    • pp.503-511
    • /
    • 2013
  • 연료전지 시스템에서 공급기체 가습은 연료전지 성능효율과 전해질막 수명 향상 측면에서 중요하다. 판형 막 가습기는 일반적으로 유동 방향에 따라 직교류와 대향류로 구분되고 판과 막 사이에서 고온 다습한 공기와 저온 건조한 공기의 열 및 물질전달이 이루어진다. 본 연구에서는 현열 및 잠열 ${\varepsilon}$-NTU 법을 이용하여 입구 온도와 유량 변화에 따른 열 및 물질전달 성능 변화를 유동 방향에 따라 비교하였다. 이를 통하여 저유량 일 때 대향류는 직교류 보다 열 및 물질전달 성능이 높은 것을 알 수 있었고 유량이 증가함에 따라 성능 차이가 감소되는 것을 확인할 수 있었다. 그리고 입구온도가 증가함에 따라 열전달 성능 변화는 작은 반면 물질전달 성능 변화는 비선형으로 크게 감소되는 결과를 얻었다.

평활관에서 이산화탄소의 증발열전달 특성에 관한 실험연구 (Experimental Study on Characteristics of Evaporation Heat Transfer of CO2 in a Smooth Tube)

  • 이상재;최준영;이재헌;권영철
    • 에너지공학
    • /
    • 제16권4호
    • /
    • pp.181-186
    • /
    • 2007
  • 본 연구에서는 이산화탄소의 증발열전달 특성을 이해하기 위해 질량유속, 열유속 기리고 포화온도를 변화시키면서 이산화탄소의 증발 열전달계수와 압력강하를 측정하였다. 질량유속과 열유속은 기존의 실험범위보다 크게 확장하여 내경 7.75 mm, 길이 5.0 m의 수평관에서 실험하였다. 실험장치는 시험부, 전원공급기, 히터, 칠러, 기어펌프, 유량계, 계측시스템 등으로 구성되었다. 건도가 증가할수록 증발 열전달계수는 감소하였으며, 이산화탄소의 증발 열전달계수는 질량유속보다 열유속에 더 민감함을 확인하였다. 또한 주어진 열유속과 포화온도에 따라 증발 열전달계수의 급격한 감소가 다르게 관찰되었다. 압력강하는 질량유속 증가에 대해 선형적인 증가를 보였지만 열유속 증가에 대한 압력강하의 증가효과가 크지 않았다.

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • 제16권4호
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.

Prediction of Forced Convective Boiling Heat Transfer Coefficient of Pure Refrigerants and Binary Refrigerant Mixtures Inside a Horizontal Tube

  • Kim, Min-Soo;Hong, Eul-Cheong;Shin, Jee-Young;Kyungdoug Min;Ro, Sung-Tack
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.935-944
    • /
    • 2003
  • Forced convective boiling heat transfer coefficients were predicted for an annular flow inside a horizontal tube for pure refrigerants and nonazeotropic binary refrigerant mixtures. The heat transfer coefficients were calculated based on the turbulent temperature profile in liquid film and vapor core considering the composition difference in vapor and liquid phases, and the nonlinearity in mixing rules for the calculation of mixture properties. The heat transfer coefficients of pure refrigerants were estimated within a standard deviation of 14% compared with available experimental data. For nonazeotropic binary refrigerant mixtures, prediction of the heat transfer coefficients was made with a standard deviation of 18%. The heat transfer coefficients of refrigerant mixtures were lower than linearly interpolated values calculated from the heat transfer coefficients of pure refrigerants. This degradation was represented by several factors such as the difference between the liquid and the overall compositions, the conductivity ratio and the viscosity ratio of both components in refrigerant mixtures. The temperature change due to the concentration gradient was a major factor for the heat transfer degradation and the mass flux itself at the interface had a minor effect.

주유동중에 놓인 원관 외부에서의 발생하는 착상 및 열전달에 관한 연구 (A Study of Frost Formation and Heat Transfer on a Cylinder in a Cross-Flow)

  • 이동근;최만수;노승탁
    • 설비공학논문집
    • /
    • 제8권4호
    • /
    • pp.537-549
    • /
    • 1996
  • A numerical study of heat and mass transfer has been carried out for a frost formation process on a circular cylinder in a cross flow including the effect of buoyancy. Studies include cases of low and high Reynolds number flows. The effect of normal velocity at the surface which is produced due to mass transfer was included in the analysis as well as heat transfer contribution generated due to mass transfer. Variations of heat transfer and frost growth both in time and in the circumferential direction have been obtained for various buoyancy parameters. The effect of flow directions(identical or opposite directions to the gravity) has been studied to yield different frost growth. Our results have been compared with existing experimental data and are in good agreement. Buoyancy analyses for a high Reynolds number flow agree with full numerical solutions for the case of having the same flow direction as gravity. However, for the opposite direction case, the boundary layer analyses would not be applicable to predict frost growth except the region near the stagnation point.

  • PDF

유동공진이 판형 열교환기의 열전달 향상과 압력강하에 미치는 영향 (Effects of Flow Resonance on Heat Transfer Enhancement and Pressure Drop in a Plate Heat Exchanger)

  • 한상규;강병하
    • 설비공학논문집
    • /
    • 제17권2호
    • /
    • pp.165-172
    • /
    • 2005
  • Heat transfer enhancement of three types of brazed plate heat exchangers has been evaluated experimentally. The effects of flow resonance in a plate heat exchanger on the heat transfer rate and pressure drop have been investigated in a wide range of mass flow rates in detail. The problem is of particular interest in the innovative design of a plate heat exchanger by flow resonance. The results obtained indicate that both heat transfer coefficient and pressure drop are increased as mass flow rate is increased, as expected. It is also found that the heat transfer enhancement is increased with an increase in the plate pitch, while the heat transfer is decreased with a decrease in the chevron angle. Pressure drop also increased with an increase in the plate pitch and with a decrease in the chevron angle. Heat transfer enhancement in the plate heat exchangers is maximized by flow resonance and the resonance frequency of the present plate heat exchangers is found to be in the range of $10~15\;Hz$.

Study on Condensation Heat Transfer Characteristics of Hydrocarbons Natural Refrigerants

  • Oh, Hoo-Kyu;Park, Seung-Jun;Park, Ki-Won;Roh, Geon-Sang;Jeong, Jae-Cheon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권3호
    • /
    • pp.10-17
    • /
    • 2001
  • This study investigated the condensation heat transfer coefficients of R-22, R-290 and R-600a inside horizontal tube. Heat transfer measurements were performed for smooth tube with inside diameter of 10.07 mm and outside diameter of 12.07 mm and inner grooved tube having 75 fins whose height is 0.25 mm. Condensation temperatures and mass velocity were ranged from 308K to 323 K and $51kg/m^2s$ to $250kg/m^2s$, respectively. The test results showed that the local condensation heat transfer coefficients increased as the mass flux increased, and also the effects of mass velocity on heat transfer coefficients of R-290 and R-600a were less than those of R-22. Average condensation heat transfer coefficients of natural refrigerants were superior to that of R-22. The present results had a good agreement with Cavallini-Zecchin's correlation for smooth and inner grooved tubes.

  • PDF

수평미세관내 R-290의 비등열전달 특성 (Boiling Heat Transfer Characteristics of R-290 in Horizontal Smooth Minichannel)

  • 최광일;;오종택
    • 설비공학논문집
    • /
    • 제18권11호
    • /
    • pp.906-914
    • /
    • 2006
  • The present paper dealt with an experimental study of boiling heat transfer characteristics of R-290. Pressure gradient and heat transfer coefficient of the refrigerant flow inside horizontal smooth minichannel were obtained with inner tube diameter of 3.0 mm and length of 2,000 mm. The direct electric heating method was applied for supplying a heat to the refrigerant uniformly. The experiments were conducted with R-290 purity of 99.99%, at saturation temperature of 0 to $10^{\circ}C$, a mass flux range of $50{\sim}250kg/m^2s$, and a heat flux range of $5{\sim}20kW/m^2$. The heat transfer coefficients of R-290 increased with increasing mass flux and saturation temperature, wherein the effect of mass flux was higher than that of the saturation temperature. Heat flux has a low effect on the increasing of heat transfer coefficient. The heat transfer coefficient was compared with six existing heat transfer coefficient correlations. The Zhang et al.'s correlation (2004) gave the best prediction of heat transfer coefficient. A new correlation to predict the two-phase flow heat transfer coefficient was developed based on the Chen correlation. The new correlation predicted the experimental data well with a mean deviation of 11.78% and average deviation of -0.07%.