• Title/Summary/Keyword: Heat and Mass Transfer

Search Result 1,287, Processing Time 0.036 seconds

Free-Stream Turbulence Effect on the Heat (Mass) Transfer Characteristics on a Turbine Rotor Surface (자유유동 난류강도가 터빈 동익 표면에서의 열(물질)전달 특성에 미치는 영향)

  • Lee, Sang-Woo;Park, Jin-Jae;Kwon, Hyun-Goo;Park, Byung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1442-1446
    • /
    • 2004
  • The heat (mass) transfer characteristics on the blade surface of a first-stage turbine rotor cascade has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is employed for the measurements of the local heat (mass) transfer coefficient on the curved blade surface. The experiments are carried out for two free-stream turbulence intensities of 1.2% and 14.7%. The high free-stream turbulence results in more uniform distributions of heat load on the both pressure and suction surfaces and in an early boundary-layer separation on the suction surface. The heat (mass) transfer enhancement on the suction surface due to the endwall vortices is found to be relatively small under the high free-stream turbulence.

  • PDF

The Effects of Impingement Hole Size on Heat Transfer of An Impingement/Effusion Cooling System (충돌제트/유출냉각기법에서 분사판의 홀배열이 열전달에 미치는 영향)

  • Choi, Jong-Hyun;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.489-496
    • /
    • 2001
  • Two perforated plates are used to investigate local heat/mass transfer characteristics in an impingement/effusion cooling system. A naphthalene sublimation method is conducted to determine the local heat/mass transfer coefficients on the upward facing surface of the effusion plate. The two plates are placed in parallel position with gap distances of 1, 2, 4 and 6 times of effusion hole diameter. The effects of hole arrangements of the plates are studied for staggered, square, and hexagonal arrays. The experiments are conducted at Reynolds number of 10,000 based on the effusion hole diameter. The results show that the smaller hole size in the staggered array has the higher transfer coefficients on the stagnation region due to the formation of higher momentum flows through the impingement holes. In the square array, heat/mass transfer on the target plate is more uniform as the number of impingement holes increases. High and uniform heat/mass transfer coefficients are obtained in the hexagonal array.

  • PDF

The Effects of Impingement Hole Arrangements on Heat Transfer of an Impingement/Effusion Cooling System (충돌제트/유출냉각기법에서 분사판의 홀배열이 열전달에 미치는 영향)

  • Choe, Jong-Hyeon;Lee, Dong-Ho;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.101-109
    • /
    • 2002
  • Two perforated plates are used to investigate local heat/mass transfer characteristics in an impingement/effusion cooling system. A naphthalene sublimation method is conducted to determine the local heat/mass transfer coefficients on the upward facing surface of the effusion plate. Two plates are placed in parallel position with gap distances of 1, 2, 4 and 6 times of effusion hole diameter. The effects of hole arrangements of the plates are studied fur staggered, square, and hexagonal arrays. The experiments are conducted at Reynolds number of 10,000 based on the effusion hole diameter. The results show that the smaller hole size in the staggered array has the higher transfer coefficients on the stagnation region due to the formation of higher momentum flows through the impingement holes. In the square array, heat/mass transfer on the target plate is more uniform as the number of impingement holes increases. High and uniform heat/mass transfer coefficients are obtained for the hexagonal array.

Measurements of Endwall Heat(Mass) Transfer Coefficient in a Linear Turbine Cascade Using Naphthalene Sublimation Technique (나프탈렌승화법을 이용한 터빈 익렬 끝벽에서의 열(물질)전달계수 측정)

  • Lee, Sang-U;Jeon, Sang-Bae;Park, Byeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.356-365
    • /
    • 2001
  • Heat (mass) transfer characteristics have been investigated on the endwall of a large-scale linear turbine cascade. Its profile is based on the mid-span of the first-stage rotor blade in a industrial gas turbine. By using the naphthalene sublimation technique, local heat (mass) transfer coefficients are measured for two different free-stream turbulence intensities of 1.3% and 4.7%. The results show that local heat (mass) transfer Stanton number is widely varied on the endwall, and its distribution depends strongly on the three-dimensional vortical flows such as horseshoe vortices, passage vortex, and corner vortices. From this experiment, severe heat loads are found on the endwall near the blade suction side as well as near the leading and trailing edges of the blade. In addition, the effect of the free-stream turbulence on the heat (mass) transfer is also discussed in detail.

Experiments on Condensation Heat Transfer Characteristics and Flow Regime Inside Microfin Tubes (마이크로핀관내 유동 양식과 응축 열전달 특성 연구)

  • 한동혁;이규정
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.602-611
    • /
    • 2001
  • Experiments on the condensation heat transfer characteristics inside a smooth and a microfin tube with R410A/R22 are performed in this study. The test tubes 7/9.52 mm in outside diameters and 3m in length are used. Varying the mass flux of the refrigerant and the condensation temperatures, the average heat transfer coefficients and pressure drop are investigated. Most flows in this study are in the annular and/or wavy flow regime. It is shown that the heat transfer is enhanced and the pressure drops are larger in the microfin tube than the smooth tube. From the heat transfer enhancement coefficients and the pressure drops, it is found that the high heat transfer enhancement factors are obtained in the range of small mass flux while the penalty factors are almost equal. Experiments results show that average heat transfer coefficients of R410A is larger than that of R22 and pressure drop of R410A is less than R22.

  • PDF

Study on Heat Transfer Characteristics of Evaporator with Horizontal Small Diameter Tubes using Natural Refrigerant Propane (자연냉매 프로판을 이용한 수평세관 증발기의 열전달 특성에 관한 연구)

  • Ku, H.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2010
  • The evaporation heat transfer characteristics of propane(R-290) in horizontal small diameter tubes were investigated experimentally. The test tubes have inner diameters of 1 mm and 4 mm. Local heat transfer coefficients were measured at heat fluxes of 12, $24\;kW/m^2$, mass fluxes of 150, $300\;kg/m^2s$, and evaporation temperature of $15^{\circ}C$. The experimental results showed that the evaporation heat transfer coefficient of R-290 has an effect on heat flux, mass flux, tube diameter, and vapor quality. The evaporation heat transfer of R-290 has an influenced on nucleate boiling at low quality and convective boiling at high quality. The evaporation heat transfer coefficient of R-290 increases with decreasing inner tube diameter. And the evaporation heat transfer coefficient of R-290 is about 1~3 times higher than that of R-134a.

Performance and Heat Transfer Characteristics of Heat Pump System Using Refrigerant Mixtures (혼합냉매를 사용한 열펌프 시스템의 성능과 열전달 특성)

  • Kim, T.S.;Shin, J.Y.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.360-369
    • /
    • 1992
  • A heat pump system is constructed to evaluate its performance and heat transfer characteristics with mixtures of R22/R142b as working fluids. The heat transfer in the evaporator and the overall performance are measured and analyzed in terms of the compositions and relevant variables. Possibility of capacity modulation by changing composition is observed without degradation of heat transfer coefficients and coefficient of performance. The cooling capacity is varied continuously within 200 percent based on minimum capacity at constant compressor speed. For similar cooling capacity, COP is improved by mixing two refrigerants and shows maximum value at 60% mass fraction of R22. Average heat transfer coefficients of mixtures decrease in comparison with pure refrigerants at similar cooling capacity and mass flow rate. However, the overall heat transfer coefficients decrease moderately. A cycle simulation is performed in order to manifest the advantages of using refrigerant mixtures, considering experimentally observed heat transfer characteristics.

  • PDF

Numerical Analysis on the Condensation Heat Transfer and Pressure Drop Characteristics of the Horizontal Tubes of Modular Shell and Tube-Bundle Heat Exchanger (모듈형 쉘-관군 열교환기에서의 응축열전달 및 압력강하 특성에 관한 수치해석)

  • Ko, Seung-Hwan;Park, Hyung-Gyu;Park, Byung-Kyu;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.191-198
    • /
    • 2001
  • A numerical analysis of the heat and mass transfer and pressure drop characteristics in modular shell and tube bundle heat exchanger was carried out. Finite Concept Method based on FVM and $k-\varepsilon$ turbulent model were used for this analysis. Condensation heat transfer enhanced total heat transfer rate $4\sim8%$ higher than that of dry heat exchanger. With increasing humid air inlet velocity, temperature and relative humidity, and with decreasing heat exchanger aspect ratio and cooling water velocity, total heat and mass transfer rate could be increased. Cooling water inlet velocity had little effect on total heat transfer.

  • PDF

Evaporation Heat Transfer and Pressure Drop of Mixture Refrigerant R-407C (혼합냉매 R-407C의 증발 열전달과 압력강하)

  • Roh, Geon-Sang;Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.542-549
    • /
    • 2008
  • The evaporation heat transfer coefficient and pressure drop of R-22 and R-407C in a horizontal copper tube were investigated experimentally. The main components of the refrigerant loop are a receiver, a compressor, a mass flow meter, a condenser and a double pipe type evaporator (test section). The test section consists of a smooth copper tube of 6.4 mm inner diameter. The refrigerant mass fluxes were varied from 100 to $300\;kg/m^2s$ and the saturation temperature of evaporator were $5^{\circ}C$. The evaporation heat transfer coefficients of R-22 and R-407C increase with the increase of mass flux and vapor quality. The evaporation heat transfer coefficients of R-22 is about $5.68{\times}46.6%$ higher than that of R-407C. The evaporation pressure drop of R-22 and R-407C increase with the increase of mass flux. The pressure drop of R-22 is similar to that of R-407C. In comparison with test results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient of R-22 and R-407C. therefore, it is necessary to develope reliable and accurate predictions determining the evaporation heat transfer coefficient of R-22 and R-407C in a horizontal tube.

Study on $CO_2$ Evaporation Heat Transfer and Pressure Drop in a Horizontal Smooth Tube (수평 평활관내 $CO_2$ 증발열전달 및 압력강하에 관한 연구)

  • Lee, Sang-Jae;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.9
    • /
    • pp.615-621
    • /
    • 2007
  • Experimental study on the heat transfer characteristics of $CO_2$ in a horizontal smooth tube was carried out to investigate the heat transfer coefficient and pressure drop during evaporation of $CO_2$. The experiment apparatus consisted of a test section, a DC power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. Experiment was conducted for various mass fluxes ($200{\sim}1200kg/m^2s$), heat flukes ($10{\sim}100kW/m^2$) and saturation temperatures (-5, 0, $5^{\circ}C$). With increasing the heat flux, the evaporation heat transfer coefficient increased. But the variation of the heat transfer coefficient on the increase of the mass flux was not large. And the significantly drops of the heat transfer coefficient was observed at any heat flux and mass flux because of the change of the flow pattern in the tube. With increasing the saturation temperature, the heat transfer coefficient increased due to the promotion of a nucleate boiling. The measured pressure drop during evaporation increased with increasing the mass flux and decreasing the saturation temperature.