• Title/Summary/Keyword: Heat Transport Limitation

Search Result 24, Processing Time 0.021 seconds

Theoretical Analysis of Heat Transport Limitation in a Screen Mesh Wick Heat Pipe

  • Lee, Ki-Woo;Park, Ki-Ho;Lee, Wook-Hyun;Rhi, Seok-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • The purpose of the present study is to examine the heat transport limitations in a screen mesh heat pipe for electronic cooling by theoretical analysis. Diameter of pipe was 6mm, and mesh numbers were 50, 100, 150, 200 and 250, and water was investigated as working fluid. According to the change of mesh number, wick layer, inclination and saturation temperature, the maximum heat transport limitations by capillary, entraintment, sonic and boiling were analyzed by a theoretical design method of heat pipe, including capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, etc. Based on the results, the capillary limitation in a small diameter of heat pipe is largely affected by mesh number and wick layer. Mesh number of 250 is desirable not to be used in pipe diameter of 6 mm, because capillary heat transport limitation decreases by the abrupt increase of liquid friction pressure due to the small liquid flow area. For the heat transport of 15 watt in 6mm diameter pipe, mesh number of 100 and one layer is an optimum wick condition, which thermal resistance is the smallest.

A study on heat transport limitation for a perfluorocarbon heat pipe (PFC 히트파이프의 열전달 한계에 관한 연구)

  • 강환국;김재진;김철주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.313-320
    • /
    • 1999
  • A PFC(Perfluorocarbon) heat pipe has been used recently for cooling of GTO(gate turn off) thyristors or diodes in electric commuter trains. The present study was conducted to determine heat transport limitation of a PFC heat pipe which is one of the important parameters in heat pipes design. The variables such as tube diameter, fill charge ratio, internal surface structure and operating temperature were examined by way of experiment. Experimental data showed that the heat transport limitation of PFC heat pipe was considerably low and mostly dependent on tube diameter, with the value of 440~500W for d$o$/=22.23mm and 150~200W for d$o$=15.88mm. The other parameters had negligible effects, except for the case of small charge ratio less than 30%. Some correlations proposed by previous studies were in agreement with data from this study within 10~30%.

  • PDF

A Study on the Heat Transport Limitations of a PFC(FC-72) Two-Phase Closed Thermosyphon for Cooling Power Semiconductors (전력변환 반도체 냉각용 PFC(FC-72) 밀폐형 2상 열사이폰의 열전달 한계에 관한 연구)

  • 박용주;홍성은;김철주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.9
    • /
    • pp.725-733
    • /
    • 2002
  • In this study, the heat transport limitations of a two-phase closed thermosyphon were investigated. For the test, a two-phase closed thermosyphon ($L_t/: 600 mm,\;L_e:105mm,\;L_a:75mm,\;L_c:420mm,\;D_o:22.2mm,$ container: copper (inner grooved surface), working fluid: PFC ($C_6F_14$) was fabricated with a reservoir that can change the fill charge ratio. The following was imposed as the factors on the heat transport limitations of a two-phase closed thermosyphon. 1) Fill charge ratio of the working fluid. 2) Tilt angle of the longitudinal axis. From tile experimental data, some results were obtained as follows. When the fill charge ratio was relatively small ($\psi$20%), the heat transport limitation occurred about 100W by dry-out limitation. However over 40%, it shelved nearly constant value (500 W) by flooding limitation. The heat transport limitation according to the tilt angle increased smoothly until the tilt angle was $60^{\circ}$,/TEX>, after then decreased slowly.

Theoretical Analysis on the Heat Transport Limitation of a Sintered Metal Wick Heat Pipe (소결윅 히트파이프의 열수송 한계에 관한 이론적 해석)

  • Kim Keun-Bae;Kim Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.16-25
    • /
    • 2004
  • Theoretical analysis for predicting the heat transport limitation of a copper powder sintered wick heat pipe was performed. The heat pipe diameter was 8mm and water was used for working fluid. The particle diameter was classified by 5 different meshes, and each capillary pressures and heat transport limitations. thermal resistances were analyzed according to the operating temperatures, wick thicknesses and inclination angles, based on the effective capillary radius($r_c$), porosity($\varepsilon$), Permeability (K). The wick capillary limitation was increased according as the particle diameter and the wick thickness and the operating temperature were increased. As the porosity and the capillary radius were larger. then the heat transport limitation was higher. The thermal resistance was greatly increased according as the wick thickness was increased.

Analysis of the Heat Transport Capacity of a Axial Grooved Heat Pipe for Solar Collector (태양열 집열기용 히트파이프의 열전달 특성에 대한 해석)

  • Chung, Kyung-Taek;Bae, Chan-Hyo;Suh, Jeong-Se;Kim, Byeong-Gi
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.317-322
    • /
    • 2005
  • This study is aimed to analyze the effects of heat pipe shape on the heat transfer in solar collector with a axial grooved heat pipe. In the design of a heat pipe. two of the most important criteria to be met are the operating temperature range and the maximum heat transport capacity, When the operating temperature range is known and the working fluid has been selected, the maximum heat transport capacity depends strongly on capillary pressure and liquid flow. The heat transport capacity of the heat pipe will depend on the geometry of the heat pipe, the wick structure. the vapor channel shape. groove number. cooling temperature. condenser length and pipe diameter. So various shapes are used for mathematical models of two-phase flow in grooved heat pipe. From the results. the adequate groove shape and scale are presented by considering the heat transport and capillary limitation.

  • PDF

Analysis of Heat Transport Limitations of the Heat Pipe for Structural Characteristics of Sintered Metal Wick (소결윅의 구조적 특성에 따른 히트파이프의 열수송 한계 분석)

  • Kim, Keun-Bae;Kim, Yoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.97-103
    • /
    • 2005
  • In this paper, effects on the heat transport limitation of heat pipe by the wick structural factors were theoretically analyzed for the sintered-copper wick heat pipe. Uniformity of particle size and sintering process were acted as dominant factors on the pore distribution and wick porosity, and small deviations of the wick thickness and the pore size greatly affected the heat transport limitations of the heat pipe. Especially, slight variations of the wick thickness, mean particle radius and capillary radius along the vapor temperatures and inclination angles remarkably changed the capillary limitation of the heat pipe.

A Study on the Operational Characteristics of a U-shape Heat Pipe (U형 히트파이프의 작동 특성에 관한 연구)

  • Gang, Hwan-Guk;Kim, Cheol-Ju;Lee, Yong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1711-1720
    • /
    • 2001
  • In this study, the heat transfer characteristics of a U-shape heat pipes were investigated. Heat is supplied to the U heat pipe through its middle zone(evaporator), and is released to the environment through its both arms(condensers). Both heat transfer coefficients and heat transport limitations were measured and compared with correlations previously developed for straight type heat pipes. Special concerns were focused to the cases, when each of condensers were submitted to a different cooling conditions, relatively. As a result. the heat transfer limitation of a U-shape heat pipe was found out to be 10∼15% less than the value for a straight heat pipe with an equivalent size.

Comparison of the Heat transport Limitations for Screen Mesh Wick and Sintered Metal Wick Heat Pipes by Theoretical Analysis (이론적 해석에 의한 스크린 메쉬윅과 소결윅 히트파이프의 열수송 한계 비교)

  • Kim Keun-Bae;Kim Yoo
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.267-274
    • /
    • 2004
  • Theoretical analysis for predicting the heat transport limitations of screen mesh wick and sintered wick heat pipes was performed. The heat pipe diameter was 8mm and water was used for working fluid. For the 250 mesh, each capillary pressures and heat transport limitations, thermal resistances were analyzed according to the operating temperatures, wick thicknesses and inclination angles, based on the effective capillary radius (r$\_$c/), porosity ($\varepsilon$) and permeability (K). The wick capillary limitation was increased as the operating temperature and the wick thickness were increased, and generally the sintered wick showed higher heat transport limitations than that of the screen wick. The thermal resistance of the screen wick was higher than that of the sintered wick and both thermal resistances were linearly increased as the wick thickness was increased.

A Study on Application of a Heat Pipe to an Evacuated Glass Tube Solar Collector (진공 유리관 태양열 집열기에 열파이프의 적용을 위한 기초 연구)

  • Kim, Chul-Joo
    • Solar Energy
    • /
    • v.12 no.2
    • /
    • pp.9-17
    • /
    • 1992
  • This is an experimental work concerning about an application of a heat pipe to an evacuated-glass-tube solar collector system. A methanol heat pipe with length of 0.7 m and diameter of 8 mm was manufactured and tested to compare its performance with that of freon thermosyphon which was originally used in a solar collector system fabricated at Thermomax Co.. Then this methanol heat pipe was utilized to be one component, i.e. heat transfer element, of the present experimental model of a solar collector. This model was performed the operation test as its absorber plate was irradiated by infrared lamps. The following results were obtained. (1) The methanol heat pipe was showed a stable operation when the variation of axial heat transport was $0{\sim}40$ watts and that of inclination angle was $30{\sim}90^{\circ}$. (2) The heat transport capability of the heat pipe was proved to be higher than that of the thermosyphon, because the heat transport limitation of the latter was occured at about 30 watt. (3) The heat pipe in a solar collector was also showed good performance as it transmitted absorbed energy.

  • PDF

Effects of the Sintered Wick Characteristics on the Heat Transport Limitations of the Heat Pipes (소결윅 특성이 히트파이프의 열수송 한계에 미치는 영향)

  • Kim, Keun-Bae;Kim, Yoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.127-135
    • /
    • 2006
  • Experimental studies of the cylindrical sintered-copper wick heat pipes were carried out to investigate the capillary heat transfer characteristics. Six models of the sintered-copper wick heat pipes were manufactured and tested to evaluate the heat transport limitations and the thermal characteristics. Also the performance of the heat pipes was analyzed theoretically and compared with the test results. The heat pipe models are divided into two sintered-wick groups and the nominal particle sizes are $180{\mu}m$(wick #1) and $200{\mu}m$(wick #2) respectively The experimental results showed that, the porosity of wick #1 was higher than that of wick #2, and also the wick #1 was generally superior than the wick #2 for the heat transport capability. The maximum heat transport rates were increased as the wick thicknesses and the vapor temperatures were increased.