• Title/Summary/Keyword: Heat Transmission

Search Result 576, Processing Time 0.059 seconds

Determination of Heat Treatment Condition for Hot Press Formed Automotive Flex Plate (자동차용 플렉스 플레이트 제조를 위한 핫프레스 포밍 열처리 조건 최적화)

  • Park, I.H.;Lee, M.G.;Kim, S.J.;Jeong, W.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.186-189
    • /
    • 2008
  • The flex plate, an automotive part which mounts to the automotive engine to transfer torque to transmission, should have considerable hardness and shape accuracy. As a way to produce the flex plate, the hot press forming technology which takes advantages of high formability at elevated temperature, enhanced strength and shape stability was introduced. Therefore, as one of major process parameters the heat treatment condition should be determined to obtain appropriate hardness in the range of manufacturer's specifications. In this study, two heat treatments, austempering and quenching and tempering (QT), were compared as feasible conditions fur the hot press forming of high-carbon tool steel and the hardness and toughness after heat treatments were evaluated. The study showed that both heat treatments resulted in improved hardness but only quenching and tempering showed practicable range of toughness.

  • PDF

A Study on the Thermal and Flow Characteristics of Wind and Radiant Heat Shield for Offshore by using Mesh Screen (메쉬 스크린을 적용한 해양구조물용 방풍 및 복사열 차단막 열유동특성에 관한 연구)

  • Yi, Chung-Seob;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.166-173
    • /
    • 2012
  • This study is about comparison of thermal and flow characteristics on the wind & radiant heat shield with STS mesh type screen for offshore. Numerical analysis was conducted to find transmission coefficient in the mesh and then analyse the flow characteristics about wind & radiant heat shield. The experiment method of solar radiation has been used as thermal radiation source to get the performance of radiant heat shield measurement. The sensor radiation device has been used to measure the reduction of solar radiation with various size of cells and at a distance of 0.5m and 1m from the cold face of the wind & radiant heat shield.

An Experimental Study on the Heat Transfer Characteristics of Two-phase closed Thermosyphon (밀폐형 2상 열사이폰의 열전달 특성에 관한 실험적 연구)

  • Cho, Ki-Hyun;Paek, Yee;Chung, Hyung-Kil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.165-171
    • /
    • 2002
  • The thermosyphon has been used as a heat transmission device in the heat recovery of low level energy and cooling for heat generating equipments. Many studies on the working fluids and wicks have been reported to improve the heat transfer efficiency of the thermosyphon. A low temperature heat pipe with acetone is chosen in the present study to compare the heat transfer characteristics due to pouring amount of working fluid, magnitude of power supplied and tilt angles. The thermosyphon made ⵁ$15.88{\times}0.8t{\times}600mm$ of copper, evaporation section 200mm, insulation section 25mm, condensation 375mm. Heat transfer rate of the thermosyphon increase as magnitude of power supplied increase and observe dry out phenomenon at 5~10% of pouring amount of working fluid. So thermosyphon at the 150kJ/s judged to need 12% or more. Heat transfer rate of the thermosyphon have nothing to do with tilt angles. Dry out phenomenon of the thermo syphon makes it possible that a low temperature thermosyphon may be used to control temperature and heat transfer of a system when the critical quantity of a working fluid is supplied in the thermosyphon.

  • PDF

A Study of Adiabatic Performance for Vacuum Glazing with Design Conditions (진공유리의 설계 조건에 따른 단열 성능 연구)

  • Hwang, Il-Sun;Lee, Young-Lim
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.582-587
    • /
    • 2012
  • Recently, the low-emissivity glass has been used to reduce the energy loss through building windows. However, it simply reduces the inflow of solar rays and has a relatively high heat transmission coefficient. To solve the problems, a high-efficiency vacuum glazing has been under development but it has not been actively used due to its high price and insufficient performance. In this paper, the effects of internal pressure, pillar (spacer) height, pillar diameter, pillar interval, emissivity etc. on the performance of vacuum glazing have been analyzed with three-dimensional computational fluid dynamics and structural analysis. As a result, the performance of vacuum glazing was predicted more accurately and major factors that determine the performance of vacuum glazing were optimized.

Dressing Poses in Relation to Clothing Thermal Insulation

  • Li, Jun;Zhang, Weiyuan;Liu, Yan
    • Fashion & Textile Research Journal
    • /
    • v.4 no.6
    • /
    • pp.544-549
    • /
    • 2002
  • By the movable thermal manikin developed by China Dong Hua university, the laws of clothing thermal insulation influenced by dressing poses are studied. It is found that $I_a$ on nude thermal manikin has no relation to testing pose as a whole (notable level is 5%), while the change of testing pose influences $I_a$ value on parts of body obviously. The testing result $I_{cle}$ on clothed thermal manikin has relation to testing pose. The $I_{cle}$ value of the whole body in seated pose decreases 20 percent compared with that in standing pose (notable level is 1%). In view of heat transmission theory, the reasons are pointed out based on the knowledge of heat transmission.

Microstructure and Fracture Path of Cr-Mn-N Steel upon Aging Treatment

  • Lee, Se-Jong;Sung, Jang-Hyun;Ralls, K.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.3
    • /
    • pp.21-30
    • /
    • 1991
  • Microstructural analysis was conducted to observe the effect of aging treatments in a Cr-Mn austenitic stainless steel containing nitrogen, and the amount, size, shape and distribution of precipitates were investigated. It was found that on water quenching from $1000^{\circ}C$ after holding 3 h at that temperature, the steel contained no precipitates observable by optical microscopy. Precipitation of phases begins at places most favorable for the formation of nuclei-in the boundaries of grains and twins. Precipitates were studied in detail by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Chemical compositions of precipitates were examined by the use of scanning transmission electron microscopy (STEM) together with an energy dispersive X-ray (EDX) microanalysis. Also chromium depletion adjacent to grain boundary precipitates was investigated by the use of Auger electron spectroscopy (AES) for a direct examination of the fracture surface chemistry.

  • PDF

Analysis of Energy Performance and PMV Improvement by Application of Passive Factor for Office Building Renewal (오피스건물 리뉴얼시 패시브 요소적용에 따른 에너지성능 및 PMV 개선에 관한 연구)

  • Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.55-64
    • /
    • 2014
  • This paper presents a case study to investigate the monthly calculation method of ISO 13790 applied for a office building. The energy performance analysis according to improvement of insulation and air permeability of windows in K office buildings is investigated by means of building energy efficiency rating tool ($ECO_2-OD$). The K building energy system is tested experimently by the measurement of PMV(predicted mean vote) for the control of indoor thermal environment and heat transmission coefficient of windows and interior walls respectively, before and after the example K office building is remodeled passively. Therefore, Internet based energy assessment program of energy efficiency rating of office building can be applied as a program for the annual energy requirement and for evaluation of energy savings from the experimental and simulation results.

A Study on Performance Test and Fabrication of Vacuum Glazing with Numerical Analysis (수치해석을 통한 진공유리 제작 및 성능실험에 관한 연구)

  • Hwang, Il Sun;Lee, Young Lim
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.303-309
    • /
    • 2013
  • For air-tight modern buildings, secondary damage is likely to occur due to condensation in the relatively high heat-transmission windows since water vapor is not easy to discharge. Therefore, in this study, condensation performance of vacuum glazing was numerically analysed, compared with that of ordinary glass and confirmed experimentally by three sheets of vacuum glazing manufactured. The results show that the heat transmission coefficient of the vacuum glazing whose internal pressure is $10^{-3}$ torr was as low as about $5.7W/m^2{\cdot}K$. Thus, the condensation performance as well as the adiabatic performance was greatly improved compared to that of the ordinary glass.

Performance Tests on Parallel Plate Type Solar Air Heater (공기식 평행판형 태양집열기 성능실험)

  • Cha Jong Hee;Song Hi Yul
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.6 no.4
    • /
    • pp.255-261
    • /
    • 1977
  • This study was concerned with the performance of solar air heater using parallel channels. Heat transmission model was developed and fabricated to increase the economic feasibility for solar heating system by using the cheap zinc plate. The prformance was discussed as a function of mass flow rate, and plate, inlet and outlet temperatures. Experimental results show that heat transmission model is sufficient for the analysis of thermal characteristics of air heater and collection efficiency is better than the domestic water heater, as the range 32-49 percent. Collection efficiency in the 2 layers of glass cover is better than that in 1 layer, so it is considered better to use the 2 layers of glass cover during the cold winter season in Korea.

  • PDF

Dynamic Line Rating Prediction in Overhead Transmission Lines Using Artificial Neural Network (신경회로망을 이용한 송전선 허용용량 예측기법)

  • Noh, Shin-Eui;Kim, Yi-Gwhan;Lim, Sung-Hun;Kim, Il-Dong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.79-87
    • /
    • 2014
  • With the increase of demand for electricity power, new construction and expansion of transmission lines for transport have been required. However, it has been difficult to be realized by such opposition from environmental groups and residents. Therefore, the development of techniques for effective use of existing transmission lines is more needed. In this paper, the major variables to affect the allowable transmission capacity in an overhead transmission lines were selected and the dynamic line rating (DLR) method using artificial neural networks reflecting unique environment-heat properties was proposed. To prove the proposed method, the analyzed results using the artificial neural network were compared with the ones obtained from the existing method. The analyzed results using the proposed method showed an error of 0.9% within ${\pm}$, which was to be practicable.