• Title/Summary/Keyword: Heat Transmission

Search Result 576, Processing Time 0.021 seconds

Assessment of Immune Quality and Pathogen Contamination of Colostrums Collected from Colostrum Banks in Korea (초유은행에서 수거한 초유의 병원체 오염과 면역수준의 평가)

  • Kim, Won-Il;Park, Sang-Yul;Kim, Sang-Jin;Cho, Yong-Il;Hur, Tai-Young;Kim, Nam-Soo
    • Journal of Veterinary Clinics
    • /
    • v.30 no.4
    • /
    • pp.223-229
    • /
    • 2013
  • Because colostrum is considered to be the sole source of passively acquired maternal antibodies for calves, newborn calves must consume colostrum to gain disease resistance during their early years of life. Storage of surplus colostrum from dairy cows right after calving and feeding newborn calves in deficiency of colostrum to assure adequate uptake of IgG for protection of the calf has been a common practice in the bovine production. In the current study, 35 colostrums were randomly collected from 3 colostrum banks located in different regions of Korea and monitored for general bacterial contamination and major bovine pathogens. Immunoglobulin concentrations and BVDV-specific antibodies were also determined to evaluate the immune quality of the colostrums. Moderate to severe bacterial contamination (up to 72,000,000 CFU/ml) was observed in most of the colostrums collected from colostrum banks. General immune quality of the colostrums was under the satisfactory level since most of the colostrums contained less than 50 g/L of IgG, which is the minimum concentration for good quality colostrums. Therefore, colostrum for colostrum bank should be collected at the first 2-3 post-partum milkings according to proper harvesting and handling procedures to guarantee the safety and quality of colostrum. In addition, it was recommended that colostrum should be heat-treated before frozen and stored in the bank because pasteurization at $63^{\circ}C$ for 30 min was very effective reducing the risk of disease transmission without causing significant degradation of immunoglobulins.

Development of Loop-Mediated Isothermal Amplification Targeting 18S Ribosomal DNA for Rapid Detection of Azumiobodo hoyamushi (Kinetoplastea)

  • Song, Su-Min;Sylvatrie-Danne, Dinzouna-Boutamba;Joo, So-Young;Shin, Yun Kyung;Yu, Hak Sun;Lee, Yong-Seok;Jung, Ji-Eon;Inoue, Noboru;Lee, Won Kee;Goo, Youn-Kyoung;Chung, Dong-Il;Hong, Yeonchul
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.3
    • /
    • pp.305-310
    • /
    • 2014
  • Ascidian soft tunic syndrome (AsSTS) caused by Azumiobodo hoyamushi (A. hoyamushi) is a serious aquaculture problem that results in mass mortality of ascidians. Accordingly, the early and accurate detection of A. hoyamushi would contribute substantially to disease management and prevention of transmission. Recently, the loop-mediated isothermal amplification (LAMP) method was adopted for clinical diagnosis of a range of infectious diseases. Here, the authors describe a rapid and efficient LAMP-based method targeting the 18S rDNA gene for detection of A. hoyamushi using ascidian DNA for the diagnosis of AsSTS. A. hoyamushi LAMP assay amplified the DNA of 0.01 parasites per reaction and detected A. hoyamushi in 10 ng of ascidian DNA. To validate A. hoyamushi 18S rDNA LAMP assays, AsSTS-suspected and non-diseased ascidians were examined by microscopy, PCR, and by using the LAMP assay. When PCR was used as a gold standard, the LAMP assay showed good agreement in terms of sensitivity, positive predictive value (PPV), and negative predictive value (NPV). In the present study, a LAMP assay based on directly heat-treated samples was found to be as efficient as DNA extraction using a commercial kit for detecting A. hoyamushi. Taken together, this study shows the devised A. hoyamushi LAMP assay could be used to diagnose AsSTS in a straightforward, sensitive, and specific manner, that it could be used for forecasting, surveillance, and quarantine of AsSTS.

Comparative Inactivation of Hepatitis A Virus and Murine Encephalomyocarditis Virus to Various Inactivation Processes (바이러스 불활화 공정에 대한 Hepatitis A Virus와 Murine Encephalomyocarditis Virus의 민감도 비교)

  • Kim, In-Seop
    • Korean Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.242-247
    • /
    • 2003
  • Murine encephalomyocarditis virus (EMCV) has been used as a surrogate for hepatitis A virus (HAV) for the validation of virus removal and/or inactivation during the manufacturing process of biopharmaceuticals. Recently international regulation for the validation of HAV safety has been reinforced because of the reported cases of HAV transmission to hemophiliac patients who had received ntihemophilic factors prepared from human plasma. The purpose of the present study was to compare the resistance of HAV and EMCV to various viral inactivation processes and then to standardize the HAV validation method. HAV was more resistant than EMCV to pasteurization (60oC heat treatment for 10 hr), low pH incubation (pH 3.9 at 25oC for 14 days), 0.1 M NaOH treatment, and lyophilization. EMCV was completely inactivated to undetectable levels within 2 hr of pasteurization, however, HAV was completely inactivated to undetectable levels after 5 hr treatment. EMCV was completely inactivated to undetectable levels within 15 min of 0.1 M NaOH treatment, however, residual infectivity of HAV still remained even after 120 min of treatment. The log reduction factors achieved during low pH incubation were 1.63 for HAV and 3.84 for EMCV. Also the log reduction factors achieved during a lyophilization process of antihemophilic factor VIII were 1.21 for HAV and 4.57 for EMCV. These results indicate that HAV rather than EMCV should be used for the virus validation study and the validation results obtained using EMCV should be precisely reviewed.

An Experimental Study on Thermal Conductivity of Controlled Low Strength Materials with Coal Ash (석탄회를 활용한 CLSM의 열전도도에 관한 실험적 연구)

  • Lee, Seung Jun;Lee, Jong Hwi;Cho, Hyun Soo;Chun, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.95-104
    • /
    • 2012
  • Due to current interest in creation of urban space and urban landscape, more emphasis has been placed on underground space development. With increasing number of underground power cables and its importance, a study of backfill materials for pipe is now imperative. Backfill materials require outstanding thermal characteristics since breakdown of cable insulation can be caused if heat generated from transmission of underground power cables had not been effectively discharged through backfill materials. Also, coal ash, which are industrial by-products, is being produced in high volume every year. Among them, ponded ash (PA) is not recycled and instead, mostly buried. Therefore in this study, thermal conductivity test based on mixture ratio (PA, ponded ash : FA, fly ash) was performed to evaluate the thermal conductivity characteristics of CLSM (controlled low strength materials) with coal ash. The results indicate that the mixture ratio (PA, ponded ash : FA, fly ash) of 80:20, water contents of 28~30%, and cement contents of 7-11% showed the highest conductivity at 0.796~0.884W/mK and thus, considered optimal in terms of recycling ponded ash (PA) as well as for maximizing utilization as backfill materials for pipe in underground.

Preparation and characterization of Ga-doped TiO2 nanofibers by electrospinning (전기방사를 이용한 Ga이 첨가된 나노섬유의 제작 및 특성평가)

  • Song, Chan-Geun;Kang, Won Ho;Yoon, Jong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.6
    • /
    • pp.274-278
    • /
    • 2012
  • $TiO_2$ can be used optically and is applied on many areas such as gas sensor, solar cell and photocatalysis. Electrospun nanofibers have received great interest for development and utilization in some novel applications, such as chemical sensors, dye-sensitized solar cell and photo catalysis. In this study, pure $TiO_2$ and Ga-doped $TiO_2$ nanofibers synthesized by a modified electrospinning method. The Ga doped $TiO_2$ solution is prepared by mixing poly vinyl pyrrolidone, ethyl alcohol, and titanium (IV) isopropoxide. By electrospinning these sols, nanofibers were fabricated. These fibers are heat-treated at $800^{\circ}C$ in air. The prepared pure $TiO_2$ and Ga-doped $TiO_2$ nanofibers samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy.

Thermal Resistivity of Backfill Materials for Underground Power Cables (지중송전관로 되메움재의 열저항 특성)

  • 김대홍;이대수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.209-220
    • /
    • 2002
  • Because the allowable current loading of buried electrical transmission cables is frequently limited by the maximum permissible temperature of the cable or of the surrounding ground, there is a need for cable backfill materials that can maintain a low thermal resistivity (less than 5$0^{\circ}C$-cm/watt) even while they are subjected to high temperatures for prolonged periods. Temperatures greater than 5$0^{\circ}C$ to 6$0^{\circ}C$ may lead to breakdown of cable insulation and thermal nlnaway if the surrounding backfill material is unable to dissipate the heat as rapidly as it is generated. This paper describes the results of studies aiming at the development of backfill material to reduce the thermal resistivity. A large number of different additive materials were tested to determine their applicability as a substitute material. Tests were called out for DonUing river sand, a relatively uniffrm sand of very high thermal resistivity (5$0^{\circ}C$ -cnuwatt at 10% water content, 26$0^{\circ}C$-cm/watt when dry), and Jinsan granite screenings, and A-2(sand and gravel mixture), E-1 (rubble and granite screenings mixture), a well-graded materials with low thermal resistivity (about 35$^{\circ}C$ -cm/watt when at 10 percent water content, 10$0^{\circ}C$-cm/watt when dry). Based on this research, 3 types of backfill materials were suggested for improved materials with low thermal resistivity.

Simulation of the High Frequency Hyperthermia for Tumor Treatment (종양치료용 고주파 열치료 인체적용 시뮬레이션)

  • Lee, Kang-Yeon;Jung, Byung-Geun;Kim, Ji-won;Park, Jeong-Suk;Jeong, Byeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.3
    • /
    • pp.257-263
    • /
    • 2018
  • Hyperthermia supplies RF high-frequency energy above 1MHz to the tumor tissue through the electrodes. And the temperature of the tumor tissue is increased to $42^{\circ}C$ or more to cause thermal necrosis. A mathematical model can be derived a human body model for absorption and transmission of electromagnetic energy in the human model and It is possible to evaluate the distribution of temperature fields in biological tissues. In this paper, we build the human model based on the adult standard model of the geometric shape of the 3D model and use the FVM code. It is assumed that Joule heat is supplied to the anatomical model to simulate the magnetic field induced by the external electrode and the temperature distribution was analyzed for 0-1,200 seconds. As a result of the simulation, it was confirmed that the transferred energy progressively penetrates from the edge of the electrode to the pulmonary tumors and from the skin surface to the subcutaneous layer.

Nano-crystallization Behavior and Optical Properties of Na2O-Nb2O5-TeO2Glasses (1) (Na2O-Nb2O5-TeO2계 유리의 광학적 성질과 나노-결정화거동 (1))

  • 김현규;류봉기;차재민;김병관;이재성
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1078-1084
    • /
    • 2003
  • In order to develop a new type of nonlinear optical materials or photocatlaysts, Na$_2$O-Nb$_2$ $O_{5}$-Te $O_2$ glasses were prepared using conventional melt quenching method, and the crystallization behaviors and optical properties of these glasses was investigated. The optical and physical properties for Na$_2$O-Nb$_2$ $O_{5}$-Te $O_2$ glasses are: refractive index, n=2.04$\pm$0.04; density, p (g/㎤)=4.87$\pm$0.58; optical energy band of the transmission cut-off wavelength, E$_{0}$ (eV)=3.14$\pm$0.04. The transparent glass ceramics consisting of the nanocrysatls were obtained when the Na$_2$O-Nb$_2$ $O_{5}$-Te $O_2$ glass was first heat-treated at 3$50^{\circ}C$ for 1 h and than at 40$0^{\circ}C$ for 1 h. A cubic crystalline phase consisting of the nano-crysatls transforms into a stable phase at temperature above 47$0^{\circ}C$ for 1 h.

Improvement of Polycarbonate Properties by Coating of TiO2 and SiO2 Thin Film (TiO2/SiO2 박막 코팅에 의한 폴리카보네이트 특성 개선)

  • Won, Dong So;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.41-46
    • /
    • 2014
  • The property improvement of polycarbonate coated with a multilayer film composed of an inorganic $SiO_2$ film and a photocatalytic $TiO_2$ film was studied. The $SiO_2$ film as a binder had an excellent light transmission characteristic. After the treatment with atmospheric pressure plasma, the surface of $SiO_2$ film showed the hydrophilicity, which increased the film coating uniformity with a $TiO_2$-containing aqueous solution. When $TiO_2$ film was over 200 nm thick, the absorption effect of UV rays in the range of 180~400 nm suppressed the yellowing phenomena of polycarbonate substrate. The inorganic film improved the heat resistance of polycarbonate substrates. $TiO_2$ film in the outmost under the exposure of UV rays promotes the catalytic oxidation characteristics and yields the capability to the decomposition of organic contaminants, and also increases the self-cleaning properties due to the increase of hydrophilicity. Structural stability of the polycarbonate substrate coated with inorganic $TiO_2$ and $SiO_2$ film was shown. The role of $SiO_2$ film between $TiO_2$ and polycarbonate substrate suppressed the peeling of $TiO_2$ film by inhibiting the photocatalytic oxidation effect of $TiO_2$ film on the polycarbonate substrate.

Thermal Design of Electronic for Controlling X-band Antenna of Compact Advanced Satellite (차세대 중형위성 탑재 X-밴드 안테나 구동용 전자유닛 APD 열설계 및 열해석)

  • Kim, Hye-In;You, Chang-Mok;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.57-67
    • /
    • 2018
  • The APD (Antenna Pointing Driver) is an electronic equipment tool that is used to drive the two-axis gimbal-type antenna for the image data transmission of CAS (Compact Advanced Satellite). In this study, a heat dissipation of EEE (Electrical, Electronic and Electromechanical) is reviewed, to identify the parts that directly affected its efficiency, lifetime as well as the reliability of the structure. This event eventually incurs a failure of the EEE part itself, or even the entire satellite system as noted in experiments in this case. To guarantee reliability of electronic equipment during the mission, the junction temperature of EEE parts is considered a significant and important design factor, and subsequently must be secured within the allowable range. Therefore, the notation of the thermal analysis considering the derating is indispensable, and a proper thermal mathematical model should be constructed for this case. In this study, the thermal design and thermal analysis are performed to confirm the temperature requirement of the APD. In addition, we noted that the validity of the thermal model, according to each of the identified modeling methods, was therefore compared through the thermal analysis utilized in this case.