• Title/Summary/Keyword: Heat Transmission

Search Result 576, Processing Time 0.021 seconds

A Study on the Precipitation Behavior of Disordered ${\gamma}$ Phase in an $L1_2$ Ordered ${\gamma}^{\prime}-Ni_3(Al,Ti)$ Phase ($L1_2$${\gamma}^{\prime}-Ni_3(Al,Ti)$ 규칙상 중에 불규칙 ${\gamma}$상의 석출거동에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.5
    • /
    • pp.249-256
    • /
    • 2006
  • Structural studies have been performed on precipitation hardening found in $L1_2$ ordered ${\gamma}^{\prime}-Ni_3(Al,Ti)$ alloys using transmission electron microscopy. A uniform solid solution of ${\gamma}^{\prime}-L1_2$ ordered phase supersaturated with Ni can be obtained by solution annealing in a suitable temperature range. The ${\gamma}^{\prime}$ phase hardens appreciably by the fine precipitation of disordered ${\gamma}$. The shape of ${\gamma}$ precipitates formed during aging is initially spherical or round-cubic and grow into platelets as aging proceeds. High resolution electron microscopy revealed that the ${\gamma}$ precipitates are perfectly coherent with the matrix ${\gamma}^{\prime}$ as long as the ${\gamma}$-precipitates are plates. The loss of coherency initiates by the introduction of dislocations at the ${\gamma}/{\gamma}^{\prime}$ interface followed by the step formation at the dislocations. The ${\gamma}$ precipitates become globular after the loss of coherency. The strength of ${\gamma}^{\prime}-Ni_3(Al,Ti)$ increases over the temperature range of experiment by the precipitation of fine ${\gamma}$ particles. The peak temperature where a maximum strength was obtained shifted to higher temperature.

Effects of Rolling and Cooling Conditions on Microstructures and Mechanical Properties of High-Deformable Pipeline Steels (고변형능 라인파이프강의 미세조직과 기계적 특성에 미치는 압연 및 냉각 조건의 영향)

  • Lee, S.I.;Hwang, B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.5
    • /
    • pp.235-241
    • /
    • 2014
  • Effects of rolling and cooling conditions on microstructures and mechanical properties of high-deformable pipeline steels were investigated in this study. Six kinds of pipeline steels were fabricated by varying rolling and cooling conditions, and their microstructures were analyzed by scanning electron microscopy, electron back-scattered diffraction, and transmission electron microscopy. Tensile and Charpy impact tests were conducted on the steels in order to examine the mechanical properties. The steels rolled in the two-phase region showed better low-temperature toughness than those in the single-phase region due to the larger amount of ferrites having high-angle boundaries, although they have lower strength and absorbed energy. The steel rolled in single-phase and finish-cooled at higher temperature showed a good combination of high strength and good low-temperature toughness as well as excellent deformability of the lowest yield ratio and the highest uniform elongation because of the presence of fine ferrite and a mixture of various low-temperature transformation phases.

Dissolution Behavior of Complex Carbonitrides in a Microalloyed Steel (Microalloyed 강에서 복합 탄질화물의 재용해 거동)

  • Jung, Jae-Gil;Park, June-Soo;Ha, Yang-Soo;Lee, Young-Kook;Bae, Jin-Ho;Kim, Kisoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.6
    • /
    • pp.287-292
    • /
    • 2008
  • Dissolution behavior of complex carbonitrides in a Nb-Ti-V microalloyed steel was quantitatively examined by electrical resistivity, transmission electron microscopy (TEM), and optical microscopy. The electrical resistivity increased with solution treatment temperature up to $1250^{\circ}C$ for a holding time of 15 min. But, an increasing rate of electrical resistivity with temperature was obviously decreased above $1150^{\circ}C$. As the solution treatment temperature increases, irregular shaped Nb-rich carbonitrides disappear and cuboidal Ti-rich carbonitrides are observed. Abnormal grain growth occurs above $1250^{\circ}C$ for a holding time of 15 min. The optimal solution treatment temperature of a Nb-Ti-V microalloyed steel was determined as $1200^{\circ}C$ for a holding time of 15 min.

A Study on Performance of the Wire/Wireless Integration Fire Detection System (유무선통합화재감지시스템 성능에 관한 연구)

  • Jung, Jong-Jin;SaKong, Seong-Ho
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.178-184
    • /
    • 2010
  • In this study, a smoke or a heat which occurs by a fire is perceived by wireless detector, this signal is transmitted to the receiving device by the wireless installation which is not the wire device and wire/wireless integration system which sends this signal to main server via wire system is proposed. In addition wireless heat/smoke detector, wireless module, firmware and wire/wireless integration controller were developed and for verifying regarding the efficiency and applicability of wire/wireless installation actual place application experiment was really accomplished with a transmission tower, a multipurpose building, and a station etc of the subway. The experimental result, it could operate the system which is proposed normally with all experimental object ones and, future actual place application possibility could verify.

Design Methodology of Series Resonant Converter and Coil of Induction Heating Applications for Heating Low Resistance IH-Only Container (낮은 저항의 IH 전용용기를 가열할 수 있는 유도 가열 컨버터와 코일 설계)

  • Jeong, Si-Hoon;Park, Hwa-Pyoeng;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.24-31
    • /
    • 2018
  • An induction heating (IH) resonant converter, as well as its coil design method, is proposed in this study to improve the heat capability of low- and high-resistance IH vessels. Conventional IH resonant converters have been designed only for heating high-resistance containers designed for IH application. Thus, the primary current in the resonant tank becomes extremely high to transfer the rated power when the converter heats the low-resistance vessel. As a result, the rated power cannot be transferred due to overcurrent flows against the rated switch current. Hence, the optimal number of coil turns and proper operating frequency to heat high- and low-resistance vessels are proposed in this study by analyzing an IH load model. Simulation and experimental results using a 2.4 kW prototype resonant converter and its IH coil validate the proposed design.

Interfacial Reactions between W Thin Film and 6H-SiC during Heat Treatments (열처리에 따른 W 박막과 6H-SiC의 계면반응에 관한 연구)

  • Shin, Yang-Soo;Lee, Byung-Taek
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.545-550
    • /
    • 1998
  • Phase reactions at W /6H- SiC interfaces during heat treatments were investigated by X- Ray diffractometer and transmission electron microscopy. No detectable reactions were found after annealing at up to 900$0^{\circ}C$ whereas formation of $W_5Si_3$ and $W_2C$$0^{\circ}C$ This result is consistent with a previous report that the reactions between 3C-SiC and W occurs at llOOoe, and suggests that $W_5Si_3$ and $W_2C$ are the stable phases in this temperature range.

  • PDF

Glycothermal Synthesis and Characterization of 3Y-TZP Nanoparticles

  • Song, Jeong-Hwan;Lee, Ju-Hee
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.412-416
    • /
    • 2009
  • In this study, 3 mol% yttria-tetragonal zirconia polycrystal (3Y-TZP) nanoparticles were synthesized by the glycothermal method under various reaction temperatures and times. The co-precipitated precursor of 3Y-TZP was prepared by adding $NH_4OH$ to starting solutions, and then the mixtures were placed in an autoclave reactor. Tetragonal yttria-doped zirconia nanoparticles were afforded through a glycothermal reaction at a temperature as low as $220^{\circ}C$, using co-precipitated gels of $ZrCl_4$ and $YCl_3{\cdot}6H_2O$ as precursors and 1,4-butanediol as the solvent. The synthesized 3Y-TZP particles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Raman spectroscopy. The 3Y-TZP particles have a stable tetragonal phase only at glycothermal temperatures above $200^{\circ}C$. To investigate phase transition, the 3Y-TZP particles were heat treated from 400 to $1400^{\circ}C$ for 2 h. Raman analysis indicated that, after heat treatment, the tetragonal phase of the 3Y-TZP particles remained stable. The results of this study, therefore, suggest that 3Y-TZP powders can be prepared by the glycothermal method.

Development of Optical Fiber-based Daylighting System with Uniform Illumination

  • Ullah, Irfan;Shin, Seoyong
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.247-255
    • /
    • 2012
  • Daylighting has a very effective role in reducing power consumption and improving indoor environments in office buildings. Previously, it was not under consideration as a major source of renewable energy due to poor reliability in the design. Optical fiber as a transmission medium in the daylighting system demands uniform distribution of light to solve cost, heat, and efficiency issues. Therefore, this study focuses on the uniform distribution of sunlight through the fiber bundle and to the interior of the building. To this end, two efficient approaches for the fiber-based daylighting system are presented. The first approach consists of a parabolic mirror, and the second approach contains a Fresnel lens. Sunlight is captured, guided, and distributed through the concentrator, optical fibers, and lenses, respectively. At the capturing stage, uniform illumination solves the heat problem, which has critical importance in making the system cost-effective by introducing plastic optical fibers. The efficiency of the system is increased by collimated light, which helps to insert maximum light into the optical fibers. Furthermore, we find that the hybrid system of combining sunlight and light emitting diode light gives better illumination levels than that of traditional lighting systems. Simulation and experimental results have shown that the efficiency of the system is better than previous fiber-based daylighting systems.

Bending Fatigue Strength of Carburized and Induction Hardened Gears (침탄 및 고주파 열처리한 치차의 굽힘피로강도 평가)

  • Kim, W.D.;Choi, B.I.;Han, S.W.;Kim, J.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.1-8
    • /
    • 1994
  • To enhance the strength of gears for transmission, Generally caburizing heat treatment is applied. But there are some problems in this technology the distortion of gears during heat treatment process, and the discontinuity of manufacturing process. For these reasons, the high frequency induction hardening process is widely used. This method is one of the surface hardening process to improve the wear resistance and fatigue life of the machine components. In this study, to compare the bending fatigue strength of caburized gear with that of induction hardened gear, bending fatigue testing of gears with two different cases was performed by using an electrohydraulic servo-controlled fatigue testing machine and double tooth bending fatigue test fixture. Fatigue life distributions at constant stress levels were established directly from fatigue data. For gear design, the fatigue strength distribution at specified life is more important. This distribution is obtained by statical transformation from fatigue life distribution. Reliability of bending fatigue strength was estimated by P-S-N curves and Weibull distribution.

  • PDF

Rapid Fabrication of Micro-nano Structured Thin Film for Water Droplet Separation using 355nm UV Laser Ablation (355 nm UV 레이저 어블레이션을 이용한 마이크로-나노 구조의 액적 분리용 박막 필터 쾌속 제작)

  • Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.799-804
    • /
    • 2012
  • Recently micro-nano structures has widely been reported to improve the performance of waterproof, heat isolation, sound and light absorption in various fields of electric devices such as mobiles, battery, display and solar panels. A lot of micro-sized holes on the surface of thin film provide excellent sound, or heat, or light transmission efficiency more than solid film and simultaneously nano-sized protrusions around micro hole increase the hydrophobicity of the surface of thin film because of lotus leaf effects as generally known previously. In this paper new rapid fabrication process with 355 nm UV laser ablation was proposed to get micro-nano structures on the surface of thin film, which have only been observed at higher laser fluence. Developed thin micro-nano structured film was also investigated the hydrophobic property by measuring the contact angle and demonstrated the possibility to apply to water droplet separation.