• Title/Summary/Keyword: Heat Transmission

Search Result 576, Processing Time 0.027 seconds

Frictional Heat Generation in Wet Clutch Engagement according to Groove Pattern on Clutch Pad (습식클러치 마찰재의 체결 거동에 의한 마찰열 해석)

  • Kim, HaeYong;Jang, Siyoul;Kim, WooJung
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.265-270
    • /
    • 2014
  • Frictional heat greatly influences the friction behaviors during clutch engagement. Therefore, the engagement of a wet or dry clutch is frequently not under control by the frictional heat. In a wet clutch, the frictional temperature also specially needs to be controlled, and in many cases, the clutch material is selected to prevent a temperature rise from the friction between friction pad and separator. However, only the selection of the clutch material cannot ensure sufficient control of the temperature rise by the friction. The groove pattern on a friction pad is designed for more flow rates of transmission fluid between the contact gap of clutch pad and separator for the cooling effect. In this work, grove patterns are designed for more flow rates out of the contact gap between friction pad and separator plate. Selected groove design shows the improvement flow rates of transmission fluid through both inner and outer radius, where most of the transmission fluid flows through the outer radius when the clutch is engaged due to the centrifugal force in conventional wet clutch groove. Several comparisons of the amounts of frictional heat generated on clutch pads are made in order to verify the decrease of the temperature rise according to the flow rates along the groove patterns.

Methodology for Estimating the Probability of Damage to a Heat Transmission Pipe (열수송관 파손확률 추정 방법론 개발)

  • Kong, Myeongsik;Kang, Jaemo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.15-21
    • /
    • 2021
  • Losses of both life and property increased from damage to underground pipe such as heat transmission pipe buried underground in downtown because pipes are gradually aging. Considering the characteristics of the heat transmission pipe, which is not exposed to the outside and difficult to immediately identify problems such as damage, it is realistic to indirectly check the condition of the facility based on the historical information that is periodically collected through facility maintenance. In this study, a methodology for estimating the damage probability was developed by examining the history information of the heat transmission pipe, deriving an evaluation factor that is related to the damage probability. The contribution factor of the damage probability were reviewed by analyzing not only the guidelines for maintenance of heat transmission pipe of advanced European countries and domestic district heating companies, but also the cases of waterworks with similar characteristics. Evaluation factors were selected by considering not only the correlation with the damage probability but also the possibility of securing data. Based on 1999, when the construction technology and standards of heat transmission pipe changed, the damage probability estimation function according to the period of use was divided into the case of being buried before 1998 and the case of being buried after 1999, and presented. In addition, the damage probability was corrected by assigning weights according to the measured data for each evaluation factor such as the diameter, use, and management authority.

Effect of Paper Properties on the Performance of a Enthalpy Exchanger (종이 물성이 전열교환 엘리먼트 성능에 미치는 영향)

  • Kim, Nae-Hyun;Cho, Jin-Pyo;Song, Gil-Sup;Kim, Dong-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.414-418
    • /
    • 2008
  • The effects of paper properties such as density, air permeability, water vapor transmission rate on the thermal performance of plate-type enthalpy exchanger were experimentally investigated. Three enthalpy exchanger samples having different properties were made, and were tested according to the standard test procedure (KS B 6879). Effective efficiencies were defined, which accounted for the air leakage between supply and exhaust streams. Results showed that paper density affected the sensible heat transfer of the samples. Sensible heat transfer increased with density of the paper. It was also shown that water vapor transmission rate alone was not a proper indicator for the efficiency of latent heat transfer. Air permeability should also be considered for adequate evaluation of the latent heat transfer. Best performance was obtained for the sample having highest paper density and moderate water vapor transmission ratio.

  • PDF

A Study on the Hot Spot Temperature in 154kV Power Transformers

  • Kweon, Dong-Jin;Koo, Kyo-Sun;Woo, Jung-Wook;Kwak, Joo-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.312-319
    • /
    • 2012
  • The life of a power transformer is dependent on the life of the cellulose paper, which influenced by the hot spot temperature. Thus, the determination of the cellulose paper's life requires identifying the hot spot temperature of the transformer. Currently, however, the power transformer uses a heat run test is used in the factory test to measure top liquid temperature rise and average winding temperature rise, which is specified in its specification. The hot spot temperature is calculated by the winding resistance detected during the heat run test. This paper measures the hot spot temperature in the single-phase, 154kV, 15/20MVA power transformer by the optical fiber sensors and compares the value with the hot spot temperature calculated by the conventional heat run test in the factory test. To measure the hot spot temperature, ten optical fiber sensors were installed on both the high and low voltage winding; and the temperature distribution during the heat run test, three thermocouples were installed. The hot spot temperature shown in the heat run test was $92.6^{\circ}C$ on the low voltage winding. However, the hot spot temperature as measured by the optical fiber sensor appeared between turn 2 and turn 3 on the upper side of the low voltage winding, recording $105.9^{\circ}C$. The hot spot temperature of the low voltage winding as measured by the optical fiber sensor was $13.3^{\circ}C$ higher than the hot spot temperature calculated by the heat run test. Therefore, the hot spot factor (H) in IEC 60076-2 appeared to be 2.0.

Analysis of Dynamics Characteristics for Friction Elements in Automatic Transmission (자동변속기 마찰요소의 동특성 해석)

  • 최영종;정우진;김성원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.9-19
    • /
    • 1997
  • In this paper, the modeling and analysis of dynamic characteristics has been carried out for friction clutches and brakes in an automatic transmission. From the operating oil pressure generated by the valve-body, time delay by check valve and the movement of piston has been examined. Also torque capacity and torque transferred at the clutch is studied. Heat capacity and temperature distribution at the reaction plate of clutch are codeled by time-dependent, nonhomogeneous partial differential equation, and brake torque, brake time, and the amount of heat generated are investigated. It is found that the time delay at the check valve is very short but dominant at the spool.

  • PDF

Muffler Design Using Transmission Loss Prediction Considering Heat and Flow (열과 유동을 고려한 음장해석을 통한 머플러의 설계)

  • Kim, Hyunsu;Kang, Sang-Kyu;Lim, Yun-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.600-605
    • /
    • 2014
  • Two mufflers for a large-size sedan are suggested aiming (1) sporty-sound and (2) quiet-sound as well as both satisfying low back-pressure and low manufacturing cost. Transmission loss prediction considering heat and flow may increase the accuracy and reduce the development cost in muffler design; thus, GT-power prediction considering heat, flow, and acoustics is utilized. By understanding the fundamentals of flow-acoustic theory in small orifice(hole), an effective muffler design concept is proposed. Vehicle tests show the consistence with predictions for sound; also a back-pressure test bench confirms the advantage in pressure drop for both suggested mufflers. Those suggested mufflers also have advantages in manufacturing cost due to simplicity of the design.

An Analysis on the KSTAR neutral beam injection line (KSTAR 중성입자빔 수송라인 해석)

  • 임기학;김진춘;권경훈;조승연
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4B
    • /
    • pp.556-564
    • /
    • 1999
  • The analysis on heat fluxed on and transmission efficiencies by the collimators of neutral beam injection lines in KSTAR tokamak device has been carried out. And a mathematical model describing non-Gaussian beam distribution profile has been established. A neutral beam injection device is composed of 3 separate ion sources and corresponding beam transport lines, which deal with 7.8 MW of beam power, respectively. The divergence angles of ion beam are $1.2^{\circ}$and $0.5^{\circ}$, in vertical and horizontal directions, respectively. The maximum normal heat load on source exit scraper is 9.1 kW/$\textrm{cm}^2$ and net beam transmission efficiency is ~28%. The effect of misalignment of ion source and scrapers on the scraper heat load and beam transmission also has been analyzed.

  • PDF

Analysis of the Optimal Thickness and the Heat Transmission for the Triple Glazing System with Vacuum and Carbon Dioxide Gaps (진공 및 이산화탄소 삼중유리 시스템의 최적 두께 및 열관류율 분석)

  • Baek, Sang-Hoon
    • Land and Housing Review
    • /
    • v.11 no.3
    • /
    • pp.61-68
    • /
    • 2020
  • Advanced glazing systems with excellent heat transmission values (Ug-Value) have been developed to reduce the energy consumption and the greenhouse gas emission. This study proposes a triple glazing system consisting of gaps with a vacuum and a carbon dioxide gas layer which is one of greenhouse gases. As a fundamental stage, this study is focused on calculating the optimal glazing thickness and the Ug-Value via a computer simulation, Therm & Window package. As the results, it was presented that the optimal thickness of the proposed triple glazing system is 22.2 mm, and the Ug-Value is 0.273 W/㎡·K. If this glazing system is to be applied to buildings, it could not only reduce building energy consumption but could also contribute to the treatment of carbon dioxide gas which is one of greenhouse gases.

Winding Temperature Measurement in a 154 kV Transformer Filled with Natural Ester Fluid

  • Kweon, Dongjin;Koo, Kyosun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.156-162
    • /
    • 2013
  • This paper measures the hot spot temperatures in a single-phase, 154 kV, 15/20 MVA power transformer filled with natural ester fluid using optical fiber sensors and compares them with those calculated by conventional heat run tests. A total of 14 optical fiber sensors were installed on the high-voltage and low-voltage windings to measure the hot spot temperatures. In addition, three thermocouples were installed in the transformer to measure the temperature distribution during the heat run tests. In the low-voltage winding, the hot spot temperature was $108.4^{\circ}C$, calculated by the conventional heat run test. However, the hot spot temperature measured using the optical fiber sensor was $129.4^{\circ}C$ between turns 2 and 3 on the upper side of the low-voltage winding. Therefore, the hot spot temperature of the low-voltage winding measured using the optical fiber sensor was $21.0^{\circ}C$ higher than that calculated by the conventional heat run test.