• 제목/요약/키워드: Heat Transfer Process

검색결과 1,159건 처리시간 0.024초

핫프레스 포밍 공정에서의 열전달 특성에 대한 연구 (Study on Heat Transfer Characteristic in Hot Press Forming Process)

  • 이승열;이경훈;임용희;정우창
    • 소성∙가공
    • /
    • 제22권2호
    • /
    • pp.101-107
    • /
    • 2013
  • The heat transfer characteristics between die and sheet and die and coolant are important parameters in hot press forming process. The determination of the quenching time that guarantees full martensitic transformation requires proper understanding of these heat transfer characteristics. The contact area changes drastically during the quenching process due to volume changes of both die and sheet by temperature drop as well as phase transformation. Several types of modeling techniques are tested in order to select the most suitable. The effect of quenching time as well as die heat conductivity on martensitic transformation is investigated and predictions are compared to experimental results.

Non-absorbable Gas Effects on Heat and Mass Transfer in Falling Film Absorption

  • Kim, Byongjoo;Lee, Chunkyu
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.581-589
    • /
    • 2003
  • Film absorption involves simultaneous heat and mass transfer in the gas-liquid system. While the non-absorbable gas does not participate directly In the absorption process. its pretence does affect the overall heat and mass transfer. An experimental study was performed to investigate the heat and mass transfer characteristics of LiBr-H$_2$O solution flow ing over 6-row horizontal tubes with the water vapor absorption in the pretence of non-absorbable gases. The volumetric concentration of non-absorbable gas, air, was varied from 0.17 to 10.0%. The combined effects of the solution flow rate and its concentration on the heat and mass transfer coefficients were also examined. The presence of 2% volumetric concentration of air resulted in a 25% reduction in the Nusselt number and 41% reduction in the Sherwood number Optimum film Reynolds number was found to exist at which the heat and mass transfer reach their maximum value independent of air contents. Reduced Nusselt and Sherwood numbers. defined as the ratio of Nusselt and Sherwood numbers at given non-absorbable gas content to that with pure water vapor, were correlated to account for the reduction in the heat and mass transfer due to non-absorbable gases in a falling film absorption process.

이산화탄소의 초임계 가스냉각 과정의 열전달 및 압력강하 특성에 관한 실험적 연구 (Experimental Studies on Heat Transfer and Pressure Drop Characteristics during Gas Cooling Process of Carbon Dioxide in the Supercritical Region)

  • 윤석호;김주혁;김민수
    • 설비공학논문집
    • /
    • 제16권6호
    • /
    • pp.538-545
    • /
    • 2004
  • This paper presents the experimental data for the heat transfer and pressure drop characteristics obtained during the gas cooling process of carbon dioxide in a horizontal tube. The tube in which carbon dioxide flows is made of copper with an inner diameter of 7.73 mm. Experiments were conducted for various mass fluxes and inlet pressures of carbon dioxide. Mass fluxes are controlled at 225, 337 and 450 kg/$m^2$s and inlet pressures are adjust-ed from 7.5 to 8.8 ㎫. The experimental results in this study are compared with the existing correlations for the supercritical heat transfer coefficient, which generally under-predict the measured data. Pressure drop data agree very well with those calculated by the Blasius' equation. Based on the experimental data, a new empirical correlation to estimate the near-critical heat transfer coefficients has been developed.

초음파 가진에 따른 열전달 향상에 관한 연구 (An Experimental Study of enhancing heat transfer by Ultrasonic Vibration)

  • 윤정환;오율권;차경옥
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.235-240
    • /
    • 2001
  • This study presents experimental work on phase change heat transfer, in order to increase heat transfer rate, ultrasonic vibrations were introduced. Solid-liquid phase change occurs in a number of situations of practical interest. This study reveal that ultrasonic vibrations accompany the effects like agitation, acoustic streaming, cavitation, and oscillating fluid motion. Such effects are a prime mechanism in the overall melting process when ultrasonic vibrations are applied. Some common examples include the melting of edible oil, metallurgical process such as casting and welding, and materials science applications such as crystal growth. Therefore, this study presented the effective way to enhance phase change heat transfer.

  • PDF

스크롤 압축기 내부에서의 열전달에 대한 연구 (Investigation on Heat Transfer in Scroll Compressor)

  • 장기태;정상권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.199-204
    • /
    • 2003
  • In the present study, the compression process in scroll compressor was simulated in consideration of flow leakage and heat transfer. Tangential and radial leakages of the refrigerant between the scrolls were considered as nozzle flow. The experiment was first conducted with a scroll compressor for automobile air conditioning system and R134a as a refrigerant. Temperature and pressure were measured at the suction and discharge ports of the compressor to determine the thermodynamic states of the refrigerant flow. Temperature distribution of the scroll with the involute angle was also measured by thermocouples that were installed inside the scroll. Measured temperature distribution was compared with the numerical results. From this result, the thermal effect of mechanical contact was found to be important in heat transfer of the compression process.

  • PDF

층류-파동 액막의 열 및 물질전달 (Heat and mass transfer in laminar-wavy film)

  • 김병주;김정헌
    • 설비공학논문집
    • /
    • 제10권4호
    • /
    • pp.431-439
    • /
    • 1998
  • Falling film absorption process is an important problem in application such as absorption chillers. The presence of waves on the film affects the absorption process significantly. In the present study the characteristics of heat and mass transfer in laminar-wavy falling film were studied numerically. The wavy flow behavior was incorporated in the energy and diffusion equation. The numerical solution indicated that the interfacial wave increased the transfer rates remarkably. Interfacial shear stress and wave frequency seemed to be the dominant factors on the film Nusselt number and Sherwood number in the wavy film. A comparison of the transfer rates of the wavy film to that of the smooth film showed that the mass transfer rate could be increased by more than 50%.

  • PDF

정밀금형 알루미늄 합금주조공정시 주물/금형 접촉면에서의 Inverse 열전달해석에 관한 연구 (Inverse Heat Transfer Analysis at the Mold/Casting Interface in the Aluminum Alloy Casting Process with Precision Metal Mold)

  • 문수동;강신일
    • 한국주조공학회지
    • /
    • 제18권3호
    • /
    • pp.246-253
    • /
    • 1998
  • Precision metal mold casting process is a casting method manufacturing mechanical elements with high precision, having heavy/light alloys as casting materials and using permanent mold. To improve dimensional accuracy and the final mechanical properties of the castings, the solidification speed and the cooling rate of the casting should be controlled with the optimum mold cooling system, and moreover, to obtain more accurate control of the whole process interfacial heat transfer characteristic at the mold/casting interface must be studied in advance. In the present study, aluminum alloy casting system with metal mold equipped with electrical heating elements and water cooling system was designed and the temperature histories at points inside the metal mold were measured during the casting process. The heat transfer phenomena at the mold/casting interface was characterized by the heat flux between solidifying casting metal and metal mold, and the heat flux history was obtained using inverse heat conduction method. The effect of mold cooling condition upon the heat flux profile was examined, and the analysis shows that the heat flux value has its maximum at the beginning of the process.

  • PDF

Heat Transfer Correlation during Gas-Cooling Process of Carbon Dioxide in a Horizontal Tube

  • Kang Byung-Ha;Choi Yi-Cheol;Kim Suk-Hyun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제14권1호
    • /
    • pp.19-27
    • /
    • 2006
  • The characteristics of heat transfer and pressure drop have been investigated experimentally during gas-cooling process of carbon dioxide. The results of this study are useful information in the design of a heat exchanger of $CO_2$ refrigerator. The test section consists of 6 series of copper tube, 4.15 and 2.18mm ID, respectively. The inlet temperature, the operating pressure, and the mass flux are varied in the range of $80{\sim}120^{\circ}C,\;{7\sim}10MPa,\;and\;400{\sim}1,900kg/m^2s$, respectively. The heat transfer coefficient of $CO_2$ is affected by temperature, inlet pressure, and mass flux of $CO_2$. At the maximum HTC, the temperature of $CO_2$ nearly accords with the psuedocritical temperature. It is found that the pressure drop is substantially affected by mass flux and inlet pressure of $CO_2$ . The results have been compared with those of previous work. The heat transfer correlation at the gas-cooling process has been also suggested which predicts within the error of 20%.

최적화 기법과 분산 컴퓨팅을 이용한 재료 성형공정의 역문제에 관한 연구 (A Study on Inverse Problem of Materials Forming Process using Optimization Technique and Distributed Computing)

  • 최주호;오동길;하덕식;김준범
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.632-639
    • /
    • 2004
  • In this paper, an inverse problem of glass forming process is studied to determine a number of unknown heat transfer coefficients which are imposed as boundary conditions. An analysis program for transient heat conduction of axi-symmetric dimension is developed to simulate the forming and cooling process. The analysis is repeated until it attains periodic state, which requires at least 30 cycles of iteration. Measurements are made for the temperatures at several available time and positions of glass and moulds in operation. Heat removal by the cooling water from the plunger is also recorded. An optimization problem is formulated to determine heat transfer coefficients which minimize the difference between the measured data and analysis results. Significant time savings are achieved in finite difference based sensitivity computation during the optimization by employing distributed computing technique. The analysis results by the optimum heat transfer coefficients are found to agree well with the measured data.

저온 수처리장치 열교환기의 열전달 특성에 관한 연구 (A Study on the Performance Prediction of Low Temperature Thermal Desorption System)

  • 이춘태
    • 동력기계공학회지
    • /
    • 제13권6호
    • /
    • pp.76-81
    • /
    • 2009
  • Thermal desorption systems are designed to remove organic compounds from solid matrices such as soils, sludges and filter cakes without thermally destroying them. It is a separation technology, not a destruction technology. Since it is a thermal process, there is a common belief that temperature is the only significant parameter to be monitored. While it is true that better removal efficiencies are usually achieved at higher temperatures, other factors must be considered. Since the process is governed by mass transfer, heating time and the amount of mixing are also key parameters in optimizing removal efficiency. Thermal desorption have been successfully used for just about every organic contaminant found to date. It has also been used to remove mercury. In the present study, the numerical simulation has been performed to investigate the characteristics of heat transfer of LTTD(low temperature thermal desorption). The commercial software, AMESIM was applied for analyzing the heat transfer process in the LTTD.

  • PDF