• Title/Summary/Keyword: Heat Transfer Enhancement (熱傳達增進)

Search Result 20, Processing Time 0.027 seconds

Heat Transfer Enhancement by Trapezoid Rods in Impinging Jet System (충돌분류계에서 사다리형로드에 의한 열전달증진 효과)

  • 금성민
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • The objective of the study was to investigate the characteristics of heat transfer and flow in 2-dimensional impinging air jet system, in which trapezoid rods have been set up in front of impinging plate in order to increase heat transfer. Experiments were carried out first using without the rods to establish the baseline heat transfer performance. And this result compared with the experimentation with rods. When rods are installed in front of the impinging plate, the acceleration of the flow and the eddies due to the rods seem to contribute to the heat transfer enhancement. Heat transfer performance was best under the condition of C=1 n and as the pitch is 30 mm. In this case, maximum rate of heat transfer augmentation is about 1.62 times greater compared to that without trapezoid rods.

Thermal Flow Characteristics of Impinging Air Jet by Shape of Turbulence Promoter (난류촉진체 형상에 의한 충돌제트의 열유동 특성)

  • Kum, Sungmin;Jho, Shigie;Yu, Byeonghun;Lee, Seungro
    • Journal of Energy Engineering
    • /
    • v.21 no.2
    • /
    • pp.187-193
    • /
    • 2012
  • In this study, it was experimentally investigated the effect of the clearances distance between the rod and the impinging plate on characteristics of the thermal flow. For the heat transfer enhancement of wall jet region, the right triangle and the square rods were arranged in front of the impinging plate with various clearance distances. As results, the heat transfer enhancement rate of potential core region at H/B=2 was higher than that of transition region at H/B=10. In this experiment range, the maximum heat transfer enhancement rate was about 46 % higher at the square rod with H/B=2 and C=1mm compared with the flat plate. The heat transfer enhancement rate of the right triangle rod was on average about 3 to 8 % higher than that of the square rod, regardless of the clearance.

An Experimental Study on Enhancement of Laminar Flow Heat Transfer in a Circular Pipe with Inserts (삽입물에 의한 관내 층류열전달 증진에 관한 실험적 연구)

  • 권영철;장근선;정지환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.667-673
    • /
    • 2000
  • In order to understand the laminar flow heat transfer enhancement by the swirl flow, the effects of heat transfer in a circular pipe with a twisted tape insert were investigated experimentally. In the present study, the uniform heat flux condition was considered. The laminar heat transfer correlations were developed using the least-square-fit from the surface temperature distribution of an electrically-heated pipe and flow property data. Average Nusselt number correlations with the twisted tape insert were expressed as a function of swirl parameter, Reynolds number and Prandtl number. In the case of the twisted ratio y = 6.05, the mean Nusselt number increased approximately 500% and the friction factor increased approximately 300%, compared to the case of the empty pipe, respectively.

  • PDF

A Study on the Heat Transfer Enhancement by Mesh (MESH에 의한 열전달증진에 관한 연구)

  • Geum, Seong-Min;Jeong, Dong-Su;Kim, Jong-Bo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.716-724
    • /
    • 1998
  • The objective of this research was to investigate the enhancement of heat transfer by mesh in impinging air jet system. The technique used in this research is to place mesh as a turbulence promoter in front of the impinging plate. The heat transfer characteristics with and without mesh, the effect of clearances between impinging plate and mesh, the effect of distance between nozzle exit and impinging plate, and the effect of nozzle exit velocity have been studied experimentally. When mesh was installed in front of the impinging plate, heat transer has been increased due to the acceleration between rectangular holes and divided small jets. When clearances are changed, heat transfer comes to a maximum under the condition of C = 1 mm, irrespective of nozzle exit velocity or H/B. Also the average heat transfer enhancement with mesh has been increased about 44% under the condition of U = 18 m/s, H/B = 2 and C = 1 mm, compared to the result of a flat plate without mesh. And the results of this research are compared with existing heat transfer augmentation method by rectangular or circular rod.

The Study on The Heat Transfer Enhancement Using Wire Mesh in Impinging Jet System (충돌분류계에서 WIRE MESH를 이용한 열전달 증진에 관한 연구)

  • Kum, S.M.;Kim, D.C.;Yoo, J.O.;Lee, C.E.;Yim, C.S.
    • Solar Energy
    • /
    • v.17 no.1
    • /
    • pp.47-58
    • /
    • 1997
  • The objective of this research was to investigate the enhancement of heat transfer by wire mesh in impinging air jet system at the potential core region. The first experiment was carried out without mesh between nozzle exit and flat plate and the second experiment was done with mesh between them. When mesh was installed in front of the plate, heat transfer has been Increased due to the acceleration between rectangular halls and divided small jet In case clearances are changed, heat transfer comes to maximum under the condition of C=1mm, irrespective of nozzle exit velocity and H/B. Also the average heat transfer enhancement rate of a flat plate with mesh has been increased about 44% at maximum under the condition of U=18m/s, H/B=2 and C=1mm, compared to the result of a flat plate without mesh.

  • PDF

TURBULENCE HEAT TRANSFER ENHANCEMENT TECHNIQUE FOR SQUARE DUCT WITH HIGH ASPECT RATIO (종횡비가 큰 사각 덕트내 난류 유동의 대류 열전달 증진 기술에 대한 연구)

  • Lee, Chan-Yong;Shin, Seung-Won;Chung, Ha-Seung;Park, Seung-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.305-307
    • /
    • 2010
  • In this study, we develop a method to achieve heat transfer enhancement inside a square duct with high aspect ratio without changing any inner structures. Especially, a method to lower the possible maximum temperature is suggested if constant heat flux is provided to single surface of square duct. Knowing the fact that heat transfer rate is inversely proportional to flow area, we proposed tapered channel concept which uses narrower gap toward the flow exit where the maximum temperature is expected. To maintain equivalent power consumption, inlet section has been enlarged. To verify the proposed concept, experimental tests have been performed.

  • PDF

Effective Heat Transfer Using Large Scale Vortices (대와류를 이용한 채널 내 열전달 증진)

  • Yoon, Dong-Hyeog;Choi, Choon-Bum;Lee, Kyong-Jun;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.198-206
    • /
    • 2008
  • A numerical study has been carried out to investigate heat transfer enhancement in channel flow using large-scale vortices. A square cylinder, inclined with respect to the main flow direction, is located at the center of the channel flow, generating a separation region and Karman vortices. Two cases are considered; one with a fixed blockage ratio and the other one with a fixed cylinder size. In both cases, the flow characteristics downstream of the cylinder significantly change depending on the inclination angle. As a result, heat transfer from channel wall is significantly enhanced due to increased vertical-velocity fluctuations induced by the large-scale vortices shed from the cylinder. Quantitative results as well as qualitative physical explanation are presented to justify the effectiveness of the inclined square cylinder as a vortex generator to enhance heat transfer from channel wall.

A Study on the Heat Transfer Enhancement by Trapezoid Rod in Impinging Jet System (충돌분류계에서 사다리형 로드를 이용한 열전달증진에 관한 연구)

  • Lim, T.S.;Kum, S.M.;Lee, C.E.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.565-571
    • /
    • 2001
  • The objective of this study was to investigate the characteristics of air flow and heat transfer caused by trapezoid rods array in impinging air jet system. In this study, trapezoid rods have been set up on front of flat plate to act as a turbulence promoter. Local Nusselt numbers were determined as a function of three parameters: (a) the space from rods to heating surface(C=1, 2, 4mm), (b) the pitch between each rods(P=30, 40, 50mm), (c) the distance from nozzle exit to flat plate(H/B=2, 6, 10). And this research compared the above with the experiment without trapezoid rods. As a result, heat transfer performance was best under the condition of C=1mm and as the pitch is 30mm. In this case, maximum rate of heat transfer augmentation is about 1.9 times greater compared to that without trapezoid rods.

  • PDF

Study on the flow characteristics and heat transfer enhancement on flat plate in potential core region of 2-dimensional air jet (포텐셜 코어내에 설치된 충돌평판상의 열전달증진 및 유동특성에 관한 연구)

  • 이용화
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.193-201
    • /
    • 1998
  • A heat exchanging system employing the impinging air jet is still widely used In the various fields due to its inherent merits that include the easiness in engineering applications and the high heat and/or mass transfer characteristics. The purpose of this study is to investigate the enhancement of heat transfer and flow characteristics by placing a turbulence promoters in front of heat exchanging surface. In this study, a series of circular rods are placed at the upstream of a flat plate heat exchanger that is located at potential core region(H/W=2) of a two-dimensional impinging air jet. Heat transfer enhancement is achieved by inserting turbulence promoter that results in the flow acceleration and disturbance of boundary layer. The average Nusselt number of the flat plate with the turbulence promoters is found to be around 1.42 times higher than that of the flat plate without the turbulence promoters. Based on the results of flow visualization with a smoke wire, it is confirmed that the heat transfer enhancement is caused by the flow separation and disturbance of boundary layer by inserting the turbulence promoter.

  • PDF

A Study on the Effects of Etching Surface Characteristics on Condensation Heat Transfer in Pre-heating Exchanger (급기 예열 열교환기에서 에칭 표면 특성이 응축 열전달에 미치는 영향에 관한 연구)

  • Seok, Sungchul;Hwang, Seung Sik;Choi, Gyu Hong;Shin, Donghoon;Chung, Tae Yong
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.217-222
    • /
    • 2014
  • In order to improve the heat efficiency of the general residential boiler, we performed an experiment of condensation heat transfer to air pre-heating exchanger adhered to the condensing boiler. In this study, surface roughness was imposed on the surface of stainless steel by etching. And in order to evaluate the heat transfer performance on each plate, the counter flow heat exchanger fabricated with polycarbonate in used. As a result, on etching treated plate's overall heat transfer coefficient is higher than the original plate. And etching treated plate during 60 seconds with etchant is the to average 15% compared to bare stainless steel. And we studied the heat transfer enhancement factor through the analysis of surface characteristics using AFM.