• Title/Summary/Keyword: Heat Transfer Coefficients

Search Result 827, Processing Time 0.022 seconds

Heat and mass transfer analysis in air gap membrane distillation process for desalination

  • Pangarkar, Bhausaheb L.;Sane, Mukund G.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.159-173
    • /
    • 2011
  • The air gap membrane distillation (AGMD) process was applied for water desalination. The main objective of the present work was to study the heat and mass transfer mechanism of the process. The experiments were performed on a flat sheet module using aqueous NaCl solutions as a feed. The membrane employed was hydrophobic PTFE of pore size 0.22 ${\mu}m$. A mathematical model is proposed to evaluate the membrane mass transfer coefficient, thermal boundary layers' heat transfer coefficients, membrane / liquid interface temperatures and the temperature polarization coefficients. The mass transfer model was validated by the experimentally and fitted well with the combined Knudsen and molecular diffusion mechanism. The mass transfer coefficient increased with an increase in feed bulk temperature. The experimental parameters such as, feed temperature, 313 to 333 K, feed velocity, 0.8 to 1.8 m/s (turbulent flow region) were analyzed. The permeation fluxes increased with feed temperature and velocity. The effect of feed bulk temperature on the boundary layers' heat transfer coefficients was shown and fairly discussed. The temperature polarization coefficient increased with feed velocity and decreased with temperature. The values obtained were 0.56 to 0.82, indicating the effective heat transfer of the system. The fouling was observed during the 90 h experimental run in the application of natural ground water and seawater. The time dependent fouling resistance can be added in the total transport resistance.

A Study on the Improvement of Efficiency of Heat Transfer on the Heat Recovery Ventilator with Rotating Porous Disk (로터리형 폐열회수 환기장치의 열전달 성능 향상에 관한 연구)

  • Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.6
    • /
    • pp.1352-1357
    • /
    • 2014
  • In the present study, the heat transfer performance on the heat recovery ventilator with rotary disk were experimentally investigated. The temperature of entrance and exit of the heat recovery ventilator, air flow distribution of high temperature air and low temperature air, heat flux and the overall heat transfer coefficients are estimated from the experimental results. As the number of revolution of rotary disk, the air flow distribution increase, heat flux and overall heat transfer coefficients increase.

An Experimental Study for the Heat Transfer Augmentation of an Impinging Jet (충돌 분류의 열전달 특성향상을 위한 실험적 연구)

  • 정기호;김예용;김귀순
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.66-74
    • /
    • 1999
  • In this study, the heat transfer augmentation without additional blower power was obtained by using punched plate. Though this scheme has some disadvantages such as decrease of momentum caused by the punched plate, it has significantly increased heat transfer coefficients in the stagnation region. Compared with the case of no punched plate, heat transfer coefficients were increased by punched plate more than 2 times near the optimum condition determined in this study. Liquid crystal and hue-capturing technique were used in this study to obtain heat transfer coefficients.

  • PDF

Evaporation Heat Transfer Characteristics of R-22, R-134a in Small Diameter Tubes (세관내 R-22, R-134a의 증발 전열 특성에 관한 연구)

  • 홍진우;박승준;오종택;오후규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1081-1089
    • /
    • 2000
  • Evaporating heat transfer coefficients of R-22 and R-134a were measured in smooth horizontal copper tubes with inner diameters of 1.77, 3.36 and 5.35mm, respectively. The experiments were conducted in a closed loop, which was driven by a magnetic gear pump. Experiments were performed for the following range of variables: mass velocity (200 to 400 kg/$m^2$.s), saturation temperature($0^{circ}C,; 5^{\circ}C$) and quality(0 to 1.0). Main results obtained are as follows: evaporating heat transfer coefficients in the small diameter tubes (ID<7mm) were observed to be strongly affected by various diameters and to differ from those in the large diameter tubers. The heat transfer coefficients of the small diameter tubes were higher than those of the large diameter tubs. And it was very difficult to apply some well-known previous predictions (Shah`s, Gungor-Winterton`s and Kandlikar`s correlation) to small diameter tubes.

  • PDF

VARIATION OF LOCAL POOL BOILING HEAT TRANSFER COEFFICIENT ON 3-DEGREE INCLINED TUBE SURFACE

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.911-920
    • /
    • 2013
  • Experimental studies on both subcooled and saturated pool boiling of water were performed to obtain local heat transfer coefficients on a $3^{\circ}$ inclined tube of 50.8 mm diameter at atmospheric pressure. The local values were determined at every $45^{\circ}$ from the very bottom to the uppermost of the tube periphery. The maximum and minimum local coefficients were observed at the azimuthal angles of $0^{\circ}$ and $180^{\circ}$, respectively, in saturated water. The locations of the maxima and the minima were dependent on the inclination angle of the tube as well as the degree of subcooling. The major heat transfer mechanisms were considered to be liquid agitation generated by the sliding bubbles and the creation of big size bubbles through bubble coalescence. As a way of quantifying the heat transfer coefficients, an empirical correlation was suggested.

비 등온 유한요소해석을 위한 접면열전달계수의 결정

  • 강연식;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.783-786
    • /
    • 1996
  • In the temperature analysis, the heat transfer between the workpiece and the die has an important influence upon the temperature distribution. The accuracy of thermal analysis depends on the proper description of boundafy conditions. A t the contact surface of two materials with different temperature, this requires the knowledge of overall heat transfer coefficients. In order to evaluate the overall heat transfer coefficients, a technique is developed. This technique involves temperature measurement at the contact surface during hot upsetting operations and finite element computation to calcualte the overall heat transfer coefficient.

  • PDF

Condensing Heat Transfer Charactristics of R-22 Alternative Refrigerants on Water Sources Heat Pump (수열원 펌프에서의 R-22 대체냉매의 응축열전달특성에 관한 연구)

  • 김기수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.285-293
    • /
    • 1998
  • This paper presents an experimental study on condensing heat transfer characteristics of R-22 alternative refrigerants, R-290 and R-410a on water sources heat pump. The apparatus mainly consisted of vapor pump condenser used to the test section evaporator manual expansion valve and measuring device. Test section constructed a smoothed tube of 10.07 mm ID and 12.7mm OD with a total length 6,300 mm was horizontal double pipe counterflow condenser. The refrigerants R-22, R-290 and R-410a were cooled by a coolant circulated in a surrounding annulus. Experimental range of mass velocities was changed from about 100 to 300 kg/($m^2$.s) and inlet quality 1.0 The credibility of experimental apparatus was 6 percent between heating capacity and cooling capacity added to compressor shaft power. The condensing heat transfer coefficients were increased with increasing mass velocity. However in case of R-290 they were more increasing than those of R-410a and R-22 Comparing the heat transfer coefficient between the experimental data and other's data the Cavallini-Zecchin's data was revealed to more similar prediction of author's experimental results on the average heat transfer coefficients.

  • PDF

An Experimental Study on Convective Boiling of R-22 and R-410A in Horizontal Smooth and Micro-fin Tubes

  • Kim, Yongchan;Seo, Kook-Jeong;Lee, Kyu-Jung;Park, Youn cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1156-1164
    • /
    • 2001
  • Evaporation heat transfer coefficients and pressure drops were measured for smooth and micro-fin tubes with R-22 and R-410A. Heat transfer measurements were performed for 3.0m long horizontal tubes with nominal outside diameters of 9.52 and 7.0mm over an evaporating temperature range of -15 to 5$\^{C}$, a mass flux range of 68 to 211kg/㎡s, and a heat flux range of 5 to 15kW/㎡. It was observed that the heat transfer coefficient increased with mass flux. Evaporation heat transfer coefficients of R-22 and R-410A increased as the evaporating temperature dropped at a lower heat flux. Generally, R-420A showed the higher heat transfer coefficients than R-22 in the range of low mass flux, high heat flux and high evaporating temperature. Pressure drop increased with a decrease of evaporating temperature and a rise of mass flux. Pressure drop of R-22 was higher than that of R-410A at the same mass flux.

  • PDF

Enhancement of Pool Boiling Heat Transfer Coefficients with the Use of Carbon Nanotubes (탄소나노튜브 사용 풀비등 열전달 촉진)

  • Park Ki-Jung;Jung Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.842-849
    • /
    • 2006
  • In this study, the effect of carbon nanotubes (CNTs) on boiling heat transfer is investigated. Three refrigerants of R22, R123, R134a, and water are used as base working fluids and 1% of CNTs by volume is added to the base fluids to study the effect of CNTs. All data are obtained at the pool temperature of $7^{\circ}C$ for all refrigerants and $100^{\circ}C$ for water in the heat flux range of $10{\sim}80\;kW/m^2$. Test results show that CNTs increase the boiling heat transfer coefficients for all fluids. Especially, large enhancement was observed at low heat flutes. With increasing heat flux, however, the enhancement was suppressed due to vigorous bubble generations. Fouling was not observed during the course of this study. Optimum quantity and type of CNTs and their dispersion should be examined for their application in pool boiling heat transfer.

Experimental study on the heat transfer characteristics of separate type thermosyphon (분리형 써모사이폰의 열전달특성에 관한 실험적 연구)

  • 정기창;이기우;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.22-32
    • /
    • 1998
  • Separate type thermosyphon has larger critical heat flux than non-loop type thermosyphon, because the flooding phenomenon of vapor and liquid occurring in non-loop one does not occur. The experimental study has been carried out separate type thermosyphon with single tube. An investigation of heat transfer characteristics in separate type thermosyphon is performed experimentally. Heat transfer coefficients in an evaporator and condenser were measured experimentally. The effects of liquid filling ratio, height difference, cooling temperature and heat flux on the heat transfer coefficients were examined. As a result, the reasonable range of the liquid filling ratio and the dependence of heat transfer on vapor temperature and heat flux are obtained.

  • PDF