• Title/Summary/Keyword: Heat Transfer Characteristic

Search Result 302, Processing Time 0.032 seconds

Characteristic of Frost Growth on a Cold Cylinder Surface in Cross Flow (직교류 내 원관 표면에서의 서리층 성장 특성)

  • Yang Dong-Keun;Kim Min-Soo;Lee Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.122-128
    • /
    • 2006
  • In this paper, frosting experiments were conducted with variations of frosting parameters in order to obtain the correlations of frost properties. As a result, the local thickness, density, and surface temperature of the frost layer were presented. The dimensionless correlations for the frost thickness, frost density, frost surface temperature and heat transfer coefficient were derived as functions of dimensionless frosting parameters by using a dimensional analysis.

THe Novel Silicon MEMS Package for MMICS (초고추파 집적 회로를 위한 새로운 실리콘 MEMS 패키지)

  • Gwon, Yeong-Su;Lee, Hae-Yeong;Park, Jae-Yeong;Kim, Seong-A
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.6
    • /
    • pp.271-277
    • /
    • 2002
  • In this paper, a MEMS silicon package is newly designed, fabricated for HMIC, and characterized for microwave and millimeter-wave device applications. The proposed package is fabricated by using two high resistivity silicon substrates and surface/bulk micromachining technology. It has a good performance characteristic such as -20㏈ of $S_11$/ and -0.3㏈ of $S_21$ up to 20㎓, which is useful in microwave region. It has also better heat transfer characteristics than the commonly used ceramic package. Since the proposed silicon MEMS package is easy to fabricate and wafer level chip scale packaging is also possible, the production cost can be much lower than the ceramic package. Since it will be a promising low-cost package for mobile/wireless applications.

A study result on coordinative protection method of HTS cable implemented distribution system (초전도케이블이 병입된 계통의 고장에 대한 보호협조 검토기법)

  • Lee, Hyun-Chul;Yang, Byeong-Mo;Lee, Geun-Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.700-704
    • /
    • 2011
  • This paper proposes a coordinative protection study results of 22.9kV HTS(High-Temperature Superconducting) cable implemented distribution system. HTS cable can provide about 5 times larger transfer capacability compare to conventional XLPE cable, however, it has different heat characteristic so called quench. This paper presents the simulation results on Ichun substation HTS cable which connects main transformer and 22.9kV bus. Various expected fault cases are considered and discussed to examine whether conventional protection scheme is effective to protect both of existing facilities and HTS cable. With the results of simulation, conventional protection scheme can be used if instantaneous element and time inverse elements could be adjusted with proper time coordination. Internal temperatures of HTS cable conductor in safe region with proper protection without quench. This results are to be demonstrated by the field test and will be implemented in Ichon substation HTS cable protection and control system.

Transient memory response of a thermoelectric half-space with temperature-dependent thermal conductivity and exponentially graded modulii

  • Ezzat, Magdy A.
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.447-462
    • /
    • 2021
  • In this work, we consider a problem in the context of thermoelectric materials with memory-dependent derivative for a half space which is assumed to have variable thermal conductivity depending on the temperature. The Lamé's modulii of the half space material is taken as a function of the vertical distance from the surface of the medium. The surface is traction free and subjected to a time dependent thermal shock. The problem was solved by using the Laplace transform method together with the perturbation technique. The obtained results are discussed and compared with the solution when Lamé's modulii are constants. Numerical results are computed and represented graphically for the temperature, displacement and stress distributions. Affectability investigation is performed to explore the thermal impacts of a kernel function and a time-delay parameter that are characteristic of memory dependent derivative heat transfer in the behavior of tissue temperature. The correlations are made with the results obtained in the case of the absence of memory-dependent derivative parameters.

Neuro PID Control for Ultra-Compact Binary Power Generation Plant (초소형 바이너리 발전 플랜트를 위한 Neuro PID 제어)

  • Han, Kun-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1495-1504
    • /
    • 2021
  • An ultra-compact binary power generation plant converts thermal energy into electric power using temperature difference between heat source and cooling source. In the actual power generation environment, the characteristic value of the plant changes due to any negative effects such as environmental condition or corrosion of related equipment. If the characteristic value of the plant changes, it may lead to unstable output of the turbine in a conventional PID control system with fixed PID parameters. A Neuro PID control system based on Neural Network adaptively to adjust the PID parameters according to the change in the characteristic value of the plant is proposed in this paper. Discrete-time transfer function models to represent the dynamic characteristics near the operating point of the investigated plant are deduced, and a design strategy of the proposed control system is described. The proposed Neuro PID control system is compared with the conventional PID control system, and its effectiveness is demonstrated through the simulation results.

A Study on Combustion Characteristic with the Variation of Oxidizer phase in Hybrid Rocket Motor using PE/$N_2O$ (PE/$N_2O$ 하이브리드 로켓에서의 산화제 상 변화에 따른 연소특성 연구)

  • Lee, Jung-Pyo;Kim, Gi-Hun;Kim, Soo-Jong;Kim, Hak-Chul;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.46-53
    • /
    • 2010
  • The purpose of this paper is to study combustion characteristics with the different phase of oxidizer in hybrid rocket combustion. HDPE(High Density Polyethylene) as fuel and $GN_2O$(Gas $N_2O$), $LN_2O$(Liquid $N_2O$) as oxidizer were used to perform the experiments. An investigation was performed for a change of the regression rate, pressure of combustion chamber and combustion efficiency according to the variation of oxidizer phase. In case of using $LN_2O$ as oxidizer, the regression rate is not significantly different from using $GN_2O$ as oxidizer. It is considered that combustion energy is much larger than latent heat energy which was used in the evaporation of liquid oxidizer. However propulsion performance efficiency for $LN_2O$ showed lower value than for $GN_2O$. By increasing the flow rate of liquid oxidizer, heat transfer needed for vaporization of liquid oxidizer was increased, which resulted in the growth of combustion instability.

Heat Conduction Analysis and Fire Resistance Capacity Evaluation of Reinforced Concrete Beams Strengthened by FRP (FRP로 보강된 철근콘크리트보의 열전도해석 및 내화성능 평가)

  • Lim, Jong-Wook;Park, Jong-Tae;Kim, Jung-Woo;Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.1-8
    • /
    • 2018
  • The object of this paper is to find the characteristics of fire proof materials through an analytical method and to suggest a proper approach for fire-proof design of reinforced concrete beam strengthened with fiber reinforced polymer (FRP). Heating tests for fire-proof materials were conducted and the thermal conductivities and specific heats of them were simulated through finite element analyses. In addition, a finite element analysis on the beam specimen strengthened with FRP under high temperature, which was conducted by previous researchers, was performed and the analytical result was compared with test result. And then the compatibility of the analytical approach was evaluated. Finally, the heat resistance characteristic of RC beam strengthened with FRP was analyzed by the proposed analytical method and the strength decrease of the beam due to the high temperature was evaluated. From the comparison with analytical and test result, it was found that the heat transfer from outside to inside through the fire-proof materials can be suitably simulated by using the proposed analytical approach.

A Study of Mechanical Property Enhancement of Polymer Nanostructure using IPL Treatment (IPL 처리를 통한 고분자 나노구조의 기계적 특성 향상 연구)

  • Kim, D.;Kim, D.I.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.113-117
    • /
    • 2020
  • In this paper, We investigated the effect of heat treatment process using photo-thermal effect in order to improve mechanical properties of nanostructure on polymer films made by nanoimprint process with hybrid resin. Nanostructures which have a low refractive characteristic were fabricated by UV nanoimprint and after that heat treatment was performed using IPL (intense pulsed light) under process condition of 550 V voltage, pulse width 5 ms, frequency 0.5 Hz. The transmittance and mechanical property of fabricated nanostructure films were evaluated to observe changes in the pattern transfer rate and mechanical properties of nanostructures. The transmittance of the nanostructure was measured at 97.6% at 550 nm wavelength. Nanoindentation was performed to identify improved anti-scatch properties. Result was compared by the heat source. In case of post treatment with IPL, hardness was 0.51 GPa and in the case of hotplate was 0.27 GPa, resulting the increase of hardness of 1.8 times. Elastic modulus of IPL treated sample was 5.9GPa and Hotplate treated one was 4GPa, showing the 1.4 time increase.

Investigation into the Fabrication of Micro-scale Winkles using Repetitive Contact-and-open Method (반복 접촉-분리 방식을 이용한 마이크로 표면주름 구조 제작)

  • Kim, Seong-Jin;Park, Sang-Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.920-926
    • /
    • 2012
  • Wrinkling is a common phenomenon in nature and the shape of a wrinkle can be defined using characteristic dimensions such as pitch, length, amplitude, and density etc. Wrinkle structure can be utilized in various research fields, and especially it has special characteristics when it used in applications of heat transfer; a wrinkly surface has the effect to promote turbulent flow and increasing surface area. However, the generation of wrinkle structures in somewhat regular is not easy. Till now, there are some research works focused on realization of wrinkles in micro scale. However, most of the processes generally requires high precision equipments and high costs, and also there is a limitation to generate the wrinkles in a large area. In this study, we propose a novel method named as a RCO (repetitive contact-and-open) process to fabricate wrinkle structure with low cost and relative easy way. Using the RCO, we fabricated micro-corrugate structures successfully. From the experimental results, we found out the process parameters of RCO, and showed the possibility of RCO to be used in real applications.

A Study on the Characteristics of Refrigerating System according to the Condensation and Evaporation Load (응축 및 증발 부하에 따른 냉동시스템 특성에 관한 연구)

  • Choi, Seung-Il;Ji, Myoung-Kuk;Lee, Dae-Chul;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.44-49
    • /
    • 2013
  • The refrigerating system are high efficiency and comfortable due to the automation of the system as well as enhance energy saving are contributing to driving system. Previous study the rotational frequency of the compressor was confined to the fixed condition have changed load of evaporator and condenser related about the refrigerator performance characteristic according to the evaporation load and condensation load change tries to be analyze through the experiment. The useful data for the economic driving of the freezing apparatus tries to be drawn. Consequently, it confirmed that refrigerant in the compressor overheated and as the evaporation load increased the specific volume was increased and the coolant circulation rate decreased. In confirmed that condensation load increased the compression ratio and discharge gas temperature increased. It reduced the low-temperature efficiency and condensation calorie and the quality factor was decreased.