• Title/Summary/Keyword: Heat Transfer Characteristic

Search Result 302, Processing Time 0.033 seconds

Mathematical and Experimental Study for Mixed Energetic Materials Combustion in Closed System

  • Kong, Tae Yeon;Ryu, Byungtae;Ahn, Gilhwan;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.267-276
    • /
    • 2022
  • Modelling the energy release performance of energetic material combustion in closed systems is of fundamental importance for aerospace and defense application. In particular, to compensate for the disadvantage of the combustion of single energetic material and maximize the benefits, a method of combusting the mixed energetic materials is used. However, since complicated heat transfer occurs when the energetic material is combusted, it is difficult to theoretically predict the combustion performance. Here, we suggest a theoretical model to estimate the energy release performance of mixed energetic material based on the model for the combustion performance of single energetic material. To confirm the effect of parameters on the model, and to gain insights into the combustion characteristics of the energetic material, we studied parameter analysis on the reaction temperature and the characteristic time scales of energy generation and loss. To validate the model, model predictions for mixed energetic materials are compared to experimental results depending on the amount and type of energetic material. The comparison showed little difference in maximum pressure and the reliability of the model was validated. Finally, we hope that the suggested model can predict the energy release performance of single or mixed energetic material for various types of materials, as well as the energetic materials used for validation.

LPi Engine Combustion and Emission Characteristics Depending on LPG Properties from Various Fuel Supply Types by Using DC Motor Type Fuel Pump (DC모터형 연료펌프를 이용한 연료공급방식별 LPG성상에 따른 LPi엔진 연소 및 배출가스 특성)

  • Kim, Ju-Won;Hwang, In-Goo;Myung, Cha-Lee;Park, Sim-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.907-914
    • /
    • 2008
  • This study is mainly focused on the assessment of return, semi return, and returnless fuel supply system for an LPi engine. In order to compare the return type with returnless one with various LPG blends, combustion analysis and cyclic THC emission characteristic were tested at the part load operating condition of the LPi engine. Considering heat balance of each fuel supply systems, pressure and temperature increment of return type showed lower at the fuel rail during idle warm up operation. However, those of returnless type at LPG tank maintained stable and slow increment because the heat transfer from the LPi engine was minimized. Finally, hot restartability of each fuel supply systems were evaluated with the various LPG blends and fuel temperatures. As a result, semi return type has equivalent performance to return type considering combustion and emission characteristic, hot restartability performance for LPi engine.

A Model-Based Fault Detection and Diagnosis Methodology for Cooling Tower

  • Ahn, Byung-Cheon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.63-71
    • /
    • 2001
  • This paper presents a model-based method for detecting and diagnosing some faults in the cooling tower of healing, ventilating, and air-conditioning systems. A simple model for the cooling tower is employed. Faults in cooling tower operation are detected through the deviations in the values of system characteristic parameters such as the heat transfer coefficient-area product, the tower approach, the tower effectiveness, and fan power. Three distinct faults are considered: cooling tower inlet water temperature sensor fault, cooling tower pump fault, and cooling tower fan fault. As a result, most values of the system characteristics parameter variations due to a fault are much higher or lower than the values without faults. This allows the faults in a cooling tower to be detected easily using above methods. The diagnostic rules for the faults were also developed through investigating the changes in the different parameter due to each faults.

  • PDF

Characteristics Analysis of Capacitor Discharge Impulse Magnetizing Circuit using SPICE (SPICE를 이용한 커패시터 방전 임펄스 착자 회로의 특성 해석)

  • 백수현;김필수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.206-215
    • /
    • 1994
  • A method for simulating general characteristics and temperature characteristics of discharging SCR of the capacitor discharge impulse magnetizer-magnetizing fixture system using SPICE is presented. This method has been developed which can aid the design, understanding and inexpensive, time-saving of magnetizing circuit. As the detailed characteristic of magnetizing circuit can be obtained, the efficient design of the magntizing circuit which produce desired magnet will be possible using our SPICE modeling. Especially, computation of the temperature rise of discharging SCR is very important since it gives some indication of thermal characteristic of discharging circuit. It is implemented on a 486 personal computer, and the modeling results are checked against experimental measures. The experimental results have been achived using 305[V] and 607[V] charging voltage, low-energy capacitor discharge impulse magnetizer-magnetizing fixture of air cleaner DC motor.

  • PDF

Thermal and Flow Characteristic of the Microchannel Waterblock with Flow Distributions (미세채널 워터블록의 채널 내 유량분배에 따른 열유동 특성)

  • Choi, Mi-Jin;Kwon, Oh-Kyung;Cha, Dong-An;Yeun, Jae-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.269-274
    • /
    • 2008
  • The present study has been studied on a thermal and flow characteristic of the microchannel waterblock with flow distributions in each channels. Results of a numerical analysis using the CFX-11 are compared with results of an experiment. Numerical analysis and experiment are conducted under a heat transfer rate of 150W, inlet temperature of $20^{\circ}C$ and mass flow rates of $0.7{\sim}2.0\;kg$/min. Base temperature and pressure drop are investigated with standard deviations of mass flow rates in each channels of samples at 0.7 kg/min.

  • PDF

The Effect of Temperature on SCC of Heat Exchanger Tube for LNG Vessel (LNG선박 열교환기 세관의 SCC에 미치는 용액의 온도의 영향)

  • Jeong Hae Kyoo;Lim Uh Joh
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.1 s.22
    • /
    • pp.1-6
    • /
    • 2004
  • In general, inlet temperature of cooling sea water for steam turbine condenser is about $25^{\circ}C$ and outlet temperature is about $60^{\circ}C$. For oil cooler, outlet temperature is about $40^{\circ}C$. Therefore corrosion heavily depends on the temperature of the coolant of a heat exchanger system. It is necessary to set the temperature of the cooling water to have maximum heat transfer efficiency. This paper was studied on the effect of temperature on SCC of Al-brass which is used as a tube material of vessel heat exchanger in $3.5\%$ NaCl + $0.1\%\;NH_4OH$ solution under flow by constant displacement tester. Based on the test results, the behavior of polarization characteristic, stress corrosion crack popagation and dezincification characteristic of Al-brass was investigated.

  • PDF

An Experimental Study on the Thermal Performance of Air filled Thermal Diode during Transfer Process (공기를 작동 유체로 하는 열다이오드의 천이 과정중 열성능에 관한 실험적 연구)

  • 황인주;장영근;박이동;김철주
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.171-175
    • /
    • 1996
  • thermal diode is a device which allows heat to be transferred in one direction by convection due to difference of density of fluid. Vertical plate for heat collection and radiation are of utility for design of thermal diode. It was considered the transient process of air filled thermal diode with guide vane which combined rectangular and parallelogrammic shape enclosures. Gr was kept constantly on 1.60$\times$1010 and error range was $\pm$2% during the experiment. Nu was examined when inclined angle are 15$^{\circ}$and 45$^{\circ}$and, also the experiments was carried out with and without guide vane as well. Specially, The effect of guide vane was sensitive. Developed region inclined angle, which is characteristic of system.

  • PDF

Numerical simulation for the gas exchange process of 4-cycle single cylinder diesel engine (단기통 4행정 디젤기관의 흡배기과정 시뮬레이션 연구)

  • 이재순;이재규
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.30-40
    • /
    • 1990
  • The computer program for the prediction of the volumetric efficiency of 4-cycle single cylinder diesel engine was developed using the characteristic method which considers the effects of friction, heat transfer and specific heat. The results of calculation by this program are as follows; 1. The back flowing was arised at the beginning and the closing stage of inlet valve, and the back flowing mass and velocity decrease as the engine speed increases. 2. The volumetric efficiency varies with the engine speed and the length of inlet manifold. There was an optimum length of inlet manifold for each specified engine speed. 3. The pressure fluctuation and friction effect in the inlet manifold became very important factors for the determination of the volumetric efficiency.

  • PDF

The Comparison of the Heat Distribution and Characteristic between the Laser & SMAW Welds of 9Cr-lMo Steel. (9Cr-lMo강에 대한 Laser 및 SMAW 용접부의 열분포 특성 비교)

  • O Jong In;Bang Han Seo;Kim Yeong Pyo;Park Hyeong Geun
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.118-120
    • /
    • 2004
  • Recently 9Cr-1Mo azzoy is used in the Nuclear power plant due to its special properties. This material has the merit of high-strength resistance and corrosion resistance. Therefore the demand for this alloy is dramatically increased in the Nuclear power, petro-chemical complex etc. Re various research has been conducted to improve the material properties of this alloy. In spite of this circumstance, detail research in the area of welding process of this alloy is yet to be expanded In this study the numerical non-linear heat transfer analysis of laser welding which may possibly replace the conventional SMAW fabrication of 9Cr-1Mo steel has been carried out.

  • PDF

Temperature Distributions of High Precision Spindle with Built -in Motor (모터내장형 주축의 온도분포해석에 관한 연구)

  • 김용길;김수태;박천홍;김춘배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.624-628
    • /
    • 1996
  • Unsteady-state temperature distributions in the high precision spindle system with built-in motor are studied. For the analysis, three dimensional model is built for the high precision spindle. The three dimensional model includes the estimation on the amount of heat generation of bearing and built-in motor and the thermal characteristic values such as heat transfer coefficient. Temperature distributions are computed using the finite element method. Analysis results are compared with the measured data. Analysis shows that temperature distributions of high precision spindle system can be estimated resonably using the three dimensional model through the finite element method.

  • PDF