• Title/Summary/Keyword: Heat Transfer Characteristic

Search Result 302, Processing Time 0.034 seconds

Analysis of Heat-transfer on Winding composed with Epoxy-resin (에폭시수지로 몰딩된 권선의 열전달 특성 연구)

  • 이현진;허창수;조한구;이기택;서유진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.402-405
    • /
    • 2002
  • This paper presented the characteristic of Heat-transfer on the winding composed with Epoxy-resin in a 50 kVA cast-resin dry type transformer The resin cast transformer is used widely in supplying electricity systems. However, to know the thermal characteristics of that is very useful in designing, manufacturing, and maintaining, there is no pertinent method to calculate this. In this paper, Based on the results of the physical characteristics and the simulation by commercial software using FEM method, we established the Prototype Model for this. According to that Model, an analysis on a variation of the hottest spot temperature was discussed as a function of thermal conductivity for the individual windings composed with Epoxy-resin. The thermal conductivity of the individual windings with reference to upper way was discussed.

  • PDF

Temperature field measurement and CFD analysis of a jet impinging on a concave surface depending on changes in nozzle to surface distance and the diameter of a circular nozzle (원형 노즐의 직경 변화 및 표면으로 부터의 거리변화에 따른 오목한 표면에 충돌하는 제트의 온도장 측정 및 CFD해석)

  • Yeongmin Jo;Yujin Im;Eunseop Yeom
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.55-62
    • /
    • 2023
  • The characteristic of jet impinging on the concave surface were analyzed through thermographic phosphor thermometry (TPT) and numerical investigation. Under a jet Reynolds number of 6600, nozzle diameters and nozzle-to-surface distances (H/d) were changed 5mm and 10mm and H/d=2 and 5. The RNG k-ε turbulence model can accurately predict the distribution of Nusselt number, compared to other models (SST k-ω, realizable k-ε). Heat transfer characteristics varied with the nozzle diameter and H/d, with a secondary peak noted at H/d =2, due to vortex-induced flow detachment and reattachment. An increase in nozzle diameter enhanced jet momentum, turbulence strength, and heat transfer.

Thermal Characteristics of an Electric Clothes Dryer (의류건조기의 열적 특성에 관한 실험)

  • Kim, Jun-Ho;Jang, Seok-Pil;Choi, Chul-Jin;Hwang, Kyo-Sik;Lee, Ho-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.629-634
    • /
    • 2009
  • In this paper, drying mechanism is analyzed for improving the energy efficiency of an electric clothes dryer which consumes more electric power than other appliances. For the purpose, characteristic curves of the dryer such as temperature, relative humidity, evaporation rate, mass transfer coefficient, remaining moisture content curves are experimentally obtained. Based on the experimental results and analysis of drying mechanism, the effect of power of a heater and heat loss on the power consumption of an electric clothes dryer are systematically presented. These results demonstrate the feasibility of controlling heat loss at the heater as well as the backduct component to decrease the power consumption of an electric clothes dryer.

Thermal Characteristics of an Electric Clothes Dryer (의류건조기의 열적 특성에 관한 실험)

  • Kim, Jun-Ho;Jang, Seok-Pil;Choi, Chul-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2262-2267
    • /
    • 2008
  • In this paper, drying mechanism is analyzed for improving the energy efficiency of an electric clothes dryer which consumes more electric power than other appliances. For the purpose, characteristic curves of the dryer such as temperature, relative humidity, evaporation rate, mass transfer coefficient, remaining moisture content curves are experimentally obtained. Based on the experimental results and analysis of drying mechanism, the effect of power of a heater and heat loss on the power consumption of an electric clothes dryer are systematically presented. These results demonstrate the feasibility of controlling heat loss at the heater as well as backduct component to decrease the power consumption of an electric clothes dryer.

  • PDF

Basic Study on the Regenerator of Stirling Engine (IV) - Heat Transfer and Flow Friction Characteristic of the Regenerator with Steel Wire Matrix - (스털링 기관용 재생기에 관한 기초 연구 (IV) - 철선을 축열재로 한 재생기의 전열 및 유동손실 특성 -)

  • Oh D. G.;Kim T. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.4 s.111
    • /
    • pp.202-209
    • /
    • 2005
  • The output of Stirling engine is influenced by the regenerator effectiveness. The regenerator effectiveness is influenced by heat transfer and flow friction loss of the regenerator matrix. In this paper, in order to provide a basic data for the design of regenerator matrix, characteristics of heat transfer and flow friction loss were investigated by a packed method of matrix in the oscillating flow as the same condition of operation in a Stirling engine. As matrices, 6 kinds of steel wires, 4 kinds of combined steel wires, 8 kinds of combined steel wires with screen meshes were used. The results are summarized as follows; Among 6 kinds of steel wires $({\phi}0.7\;mm,\;{\phi}0.9\;mm,\;{\phi}1.2\;mm,\;{\phi}\;1.6\;mm,\;{\phi}2.0\;mm,\;{\phi}2.7\;mm),$ the two steel wires $({\phi}0.7\;mm,\;{\phi}0.9\;mm)$ showed the highest in effectiveness. Among 4 kinds of combined steel wires $({\phi}l.6-{\phi}l.2\;mm,\;{\phi}1.2-{\phi}l.6\;mm,\;{\phi}0.9-{\phi}l.2\;mm,\;{\phi}l.2-{\phi}0.9\;mm),\;the\;{\phi}1.2-{\phi}0.9\;mm$ showed the highest in effectiveness. Among 8 kinds of combined steel wires with screen meshes $(150-{\phi}0.9\;mm,\;150-{\phi}l.2\;mm,\;{\phi}0.9\;mm-150,\;{\phi}1.2\;mm-150,\;150-{\phi}0.9\;mm-150,\;150-{\phi}1.2\;mm-150,\;150-{\phi}l.6\;mm-150,\;150-{\phi}2.0\;mm-150),\;the\;{\phi}l.2\;mm-150$ showed the highest in effectiveness.

Optimal Design of a Parallel-Flow Heat Exchanger by Using a Response Surface Method (반응표면법을 이용한 평행류 열교환기의 설계인자 최적화)

  • Oh, Seok-Jin;Lee, Kwan-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1028-1033
    • /
    • 2004
  • The heat and flow characteristics in a single-phase parallel-flow heat exchanger was examined numerically to obtain its optimal shape. A response surface method was introduced to predict its performance approximately with respect to design parameters over design domain. Design parameters are inflow and outflow angle of the working fluid and horizontal and vertical location of inlet and outlet. The evaluation of the relative priority of the design parameters was performed to choose three important parameters in order to use a response surface method. A JF factor was used as an evaluation characteristic value to consider the heat transfer and the pressure drop simultaneously. The JF factor of the optimum model, compared to that of the base model, was increased by about 5.3%.

  • PDF

Experimental study on the working characteristic of a heat pipe with combined wick (조합형 윅을 사용한 히트파이프의 작동특성에 관한 실험적 연구)

  • 홍진관;부준홍;정원복
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.236-243
    • /
    • 1999
  • Aluminum/Freon-22 heat pipes were manufactured and tested which have a special wick geometry combining axial groove and screen mesh. There were 14 axial grooves in a cross-section and these were covered by two layers of 350 mesh screens to enhance the thermal performance. The performance test was conducted by varying the thermal load and tilt angle. Furthermore, the operation limits and overall heat transfer coefficient were investigated. The experimental results will be useful in a variety of applications, especially in design and manufacturing of a high-efficiency heat exchanger and energy recovery systems.

  • PDF

Flow Distribution Characteristics in a Multi-Pass Heat Exchanger (다패스 열교환기에서의 유량분배 특성)

  • Kim, Min-Soo;Kang, Soo-Jin;Lee, Kwan-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.737-742
    • /
    • 2006
  • This paper numerically investigates to evaluate the performance according to the number of passes and the inlet/outlet diameter in a multi-pass multi-branch heat exchanger. A JF factor is used as an evaluation characteristic value to consider the heat transfer rate and the pressure drop simultaneously. It estimates the performance according to the number of passes and the inlet diameter of the reference heat exchanger. When the ratio of the inlet diameter to the header height is about 0.5, the optimum number of passes is selected along with the inlet diameter.

  • PDF

A Study on the Performance Analysis of the PAO-AIR Heat Exchangers in an Aircraft (항공기용 PAO-공기 열교환기 성능분석 연구)

  • Park, Dong-Myung;Joung, Yong-In;Moon, Woo-Yong;Park, Sung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.934-939
    • /
    • 2012
  • In this study, the performance validation of a PAO-AIR heat exchanger developed for the ECS(Environmental Control System) of a UAV(Unmanned Aerial Vehicle) has been carried out. The performance goals of a PAO-AIR heat exchanger were established by the system schematic analysis. And a heat exchanger to be met the ECS performance was developed by a detailed design and a precision manufacture. Using the developed heat exchanger, the experiment about pressure loss and effectiveness, overall heat transfer coefficient to prove the developed PAO-AIR heat exchanger performance in various conditions as well as a design point of heat exchanger was performed and the experimental results were analyzed. As the experimental results, the performance and characteristic of a PAO-AIR heat exchanger developed for the ECS of a UAV were analyzed and the development suitability was proved.

The Effect of Soil Warming on the Greenhouse Heating Load (지중가온이 온실의 난방부하에 미치는 영향)

  • Nam, Sang-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.51-60
    • /
    • 2006
  • In order to examine the heat transfer characteristic of a soil warming system and effects of soil warming on the greenhouse heating load, control experiments were performed in two greenhouses covered with double polyethylene film. One treated the soil warming with an electric heat wire and the other treated a control. Inside and outside air temperature, soil temperature and heat flux, and heating energy consumption were measured under the set point of heating temperature of $5,\;10,\;15,\;and\;20^{\circ}C$, respectively. Soil temperatures in a soil warming treatment were observed $4.1\;to\;4.9^{\circ}C$ higher than a control. Heating energy consumptions decreased by 14.6 to 30.8% in a soil warming treatment. As the set point of heating temperature became lower, the rate of decrease in the heating energy consumptions increased. The percentage of soil heat flux in total heating load was -49.4 to 24.4% and as the set point of heating temperature became higher, the percentage increased. When the set point of heating temperature was low in a soil warming treatment, the soil heat flux load was minus value and it had an effect on reducing the heating load. Soil heat flux loads showed in proportion to the air temperature difference between the inside and outside of greenhouse but they showed big difference according to the soil warming treatment. So new model for estimation of the soil heat flux load should be introduced. Convective heat transfer coefficients were in proportion to the 1/3 power of temperature difference between the soil surface and the inside air. They were $3.41\;to\;12.42\;W/m^{2}^{\circ}C$ in their temperature difference of $0\;to\;10^{\circ}C$. Radiative heat loss from soil surface in greenhouse was about 66 to 130% of total heating load. To cut the radiation loss by the use of thermal curtains must be able to contribute for the energy saving in greenhouse.