• Title/Summary/Keyword: Heat Transfer Characteristic

Search Result 302, Processing Time 0.024 seconds

Numerical analysis of LNG vaporizer heat transfer characteristic in LNG fuel ship (선박용 액화천연가스 기화기의 열전달 특성의 수치해석)

  • Lee, Dae-Chul;Afrianto, Handry;Chung, Han-Shik;Jeong, Hyo-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.22-28
    • /
    • 2013
  • The heat transfer characteristics of LNG(Liquefied Natural Gas) vaporizer on the ship was performed by numerical simulation to get the optimum NG(Natural Gas) generating condition. The glycol-water was used for heating in LNG vaporizer, and the cooling water of main engine was used as heating souse for glycol-water. This cooling water temperature increases again after recirculating from the main engine, and then it can be used to heat the glycol-water. The numerical analysis results has good agreement with the experimental results by liquid nitrogen for validation. So CFD technique was used to simulate the heat transfer characteristics of LNG vaporizer on the ship. The numerical results show that the operation condition of LNG vaporizer shows NG temperature of $6^{\circ}C$ in the outlet of LNG vaporizer, and the mass flow rates of LNG and glycol-water were showed 0.111 kg/s and 1.805 kg/s, respectively.

Development of a computer code for thermal-hydraulic design and analysis of helically coiled tube once-through steam generator

  • Zhang, Yaoli;Wang, Duo;Lin, Jianshu;Hao, Junwei
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1388-1395
    • /
    • 2017
  • The Helically coiled tube Once-Through Steam Generator (H-OTSG) is a key piece of equipment for compact small reactors. The present study developed and verified a thermal-hydraulic design and performance analysis computer code for a countercurrent H-OTSG installed in a small pressurized water reactor. The H-OTSG is represented by one characteristic tube in the model. The secondary side of the H-OTSG is divided into single-phase liquid region, nucleate boiling region, postdryout region, and single-phase vapor region. Different heat transfer correlations and pressure drop correlations are reviewed and applied. To benchmark the developed physical models and the computer code, H-OTSGs developed in Marine Reactor X and System-integrated Modular Advanced ReacTor are simulated by the code, and the results are compared with the design data. The overall characteristics of heat transfer area, temperature distributions, and pressure drops calculated by the code showed general agreement with the published data. The thermal-hydraulic characteristics of a typical countercurrent H-OTSG are analyzed. It is demonstrated that the code can be utilized for design and performance analysis of an H-OTSG.

Heat Transfer by an Oscillating Flow in a Circular Pipe with Sinusoidal Wall Temperature Distributions (벽온도분포가 정현파인 원관에서 왕복유동에 의한 열전달 해석)

  • 이대영;박상진;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3208-3216
    • /
    • 1993
  • Heat transfer characteristics of the laminar oscillating flow in a circular pipe have been studied under the condition that the wall temperature of the pipe is distributed sinusoidally with the axial direction. The axial velocity was assumed to be uniform in radial direction and the temperature field was analyzed by means of the perturbation method. The results show that the difference between wall and section-time-averaged fluid temperature increases as the oscillating frequency increases and eventually converges to a constant value which is determined by the ratio of swept distance to the characteristic length of wall temperature distribution. Also it is shown that the dominant variable in the heat transfer process when swept distance ratio is greater than 1 is not thermal Womersley number(F) but thermal Womersley number multiplied by the square root of swept distance ratio. The variation of the time-averaged Nusselt number is obtained as a function of F. The results indicate that Nusselt number is proportional to $F_{\epsilon}^{1/2}$ when both of F and .epsilon. are much greater than 1.

Study on Heat Transfer Characteristic of Liquid Rocket Engine with Calorimeter (칼로리미터를 적용한 액체로켓엔진의 열전달 특성 연구)

  • NamKoung Hyuck-Joon;Han Poong-Gyoo;Kim Hwa-Jung;Kim Dong-Hwan;Lee Kyoung-Hun;Kim Young-Soo;Yoon Young-Bin;Kim Dong-Jun;Kim Sung-Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.213-219
    • /
    • 2005
  • Small liquid rocket engine (SLRE) with calorimeter were developed and tested to evaluate cooling characteristics in the liquid rocket engine. Therefore, cooling performance analysis was performed to predict the heat transfer coefficient on gas side wall in 10 calorimeter channel. A heat transfer empirical formula was determined by results of firing test and computational simulation.

  • PDF

Characteristic Studies on Loop Heat Pipe with Micro Ceramic Wick (마이크로 세라믹 윅을 사용한 루프 히트파이프의 특성 연구)

  • Park, Jong-Chan;Lee, Chung-Gu;Rhi, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.823-831
    • /
    • 2007
  • This paper presents the experimental and simulation study of a loop heat pipe (LHP) that can be applied to present electronics, space missions and thermal control systems. The present experimental study was carried out employing sintered alumina ceramic wick ($d=2.96\;{\mu}m$, ${\phi}=0.61$). High purity R-134a, R-22 and water were also used as alternative working fluids in addition to ammonia. The experimental study showed that the maximum heat transfer performance for the test LHP in the vertical top heating mode was over 100 Watts when ammonia was used as the working fluid. The simulation results have been compared with the experimental results to validate a simulation model based on the thermal resistance network that was developed to evaluate the performance of LHPs, focusing on their prospective applications in electronics. The simulation model is based on the loop overall energy, mass, and momentum balance. The simulation program can predict the effects of various parameters which affect the performance of LHP within 5% compared with the experimental results.

An Experimental Study on Performance Characteristic of 30RT Closed-Type Hybrid Cooling Tower using Bare Tube (베어관을 이용한 30RT급 하이브리드 밀폐형 냉각탑의 성능특성에 관한 실험적 연구)

  • Jun, Chul-Ho;Lee, Ho-Saeng;Moon, Choon-Geun;Kim, Jae-Dol;Yoon, Jung-In
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1096-1101
    • /
    • 2005
  • In this study, the experiment of thermal performance about closed-type hybrid cooling tower was conducted. A closed type cooling tower is a device similar to a general cooling tower, but with cooling tower replaced by a heat exchanger. The test section for this experiment has the process that the cooling water flows from top part of heat exchanger to bottom side in the inner side of tube, and spray water flows gravitational direction in the outer side of it. Air contacts of tube outer side are counterflow. The heat transfer pipe used in this experiment is a bare type tube having an outside diameter of 15.88mm. In this experiment, heat performances of the cooling tower are calculated such as overall heat transfer coefficient of between the process fluid and air, cooing capacity and pressure drop.

  • PDF

Characteristic of Heat and Mass Transfer on Helical Absorber Using New Working Fluid (신작동매체를 이용한 헬리컬 흡수기의 열물질전달 특성)

  • Kwon, Oh-Kyung;Lim, Jong-Keuk;Yoon, Jung-In
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.228-233
    • /
    • 2000
  • An experimental study has been performed regarding heat and mass transfer in a falling film absorber of domestic small-sized absorption chiller/heater. Components were concentrically arranged in cylindrical form : from the center, with a series of low temperature generator, absorber and evaporator. The arrangement of such helical-typed heat exchangers allows to make the system more compact as compared to conventional one. Experimental measurements were conducted with a helical absorber using $LiBr+LiI+LiNO_3+LiCl$ and LiBr solutions. As a result, the heat and mass flux performance of $LiBr+LiI+LiNO_3+LiCl$ solution shows the tendency of $2{\sim}5%$ increase. Therefore, $LiBr+LiI+LiNO_3+LiCl$ solution can be taken consideration into applying to small-sized absorption chiller/heater because of using without crystal through high concentration as 4wt% comparing with LiBr solution.

  • PDF

Performance Analysis on a Multi-Pass Multi-Branch Heat Exchanger According to Pass Arrangement (다패스 다분지 열교환기의 패스 수에 따른 성능 분석)

  • Kim Min-Soo;Lee Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.741-748
    • /
    • 2006
  • This paper numerically investigates the effects of pass arrangement on the flow distribution characteristics and the performance of a multi-pass multi-branch heat exchanger. Four cases of pass arrangement (2, 4, 6, 8 pass) are chosen to select a proper pass arrangement. A JF factor is used as an evaluation characteristic value to consider the heat transfer and the pressure drop. The present results indicate that 4-pass heat exchanger shows the best performance, and the design parameters in 4-pass heat exchanger are optimized. The design parameters are the locations of the inlet, outlet and separator, and are optimized using a response surface methodology. The JF factor of the optimum model is increased by about 9.3%, compared to that of the reference model (2-pass heat exchanger).

On-site Performance Test and Simulation of a 10 RT Air Source Heat Pump

  • Baik, Young-Jin;Chang, Young-Soo;Kim, Young-Il
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.2
    • /
    • pp.61-69
    • /
    • 2004
  • In this study, on-site performance test of an air source heat pump which has a rated capacity of 10 RT is carried out. Since indoor and outdoor air conditions can not be controlled to satisfy the standard test conditions, experiments are done with the inlet air conditions as they exist. To estimate the performance of the heat pump for other conditions, the heat pump is modeled with a small number of characteristic parameters. The values of the parameters are determined from the few measurements measured on-site during steady operation. A simulation program is developed to calculate cooling capacity and power consumption at any other arbitrary operating conditions. The simulation results are in good agreement with the experiment. This study provides a method of an on-site performance diagnosis of an air source heat pump.

Effect of Water Temperature on Heat Transfer Characteristic of Spray Cooling on Hot Steel Plate (냉각수온 효과에 따른 고온 강판의 스프레이 냉각 열전달 특성 연구)

  • Lee, Jung-Ho;Yu, Cheong-Hwan;Park, Sang-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.503-511
    • /
    • 2011
  • Water spray cooling is a significant technology for cooling of materials from high-temperature up to $900^{\circ}C$. The effects of cooling water temperature on spray cooling are mainly provided for hot steel plate cooling applications in this study. The heat flux measurements are introduced by a novel experimental technique that has a function of heat flux gauge in which test block assemblies are used to measure the heat flux distribution on the surface. The spray is produced by a fullcone nozzle and experiments are performed at fixed water impact density of G and fixed nozzle-totarget spacing. The results show that effects of water temperature on forced boiling heat transfer characteristics are presented for five different water temperatures between 5 to $45^{\circ}C$. The local heat flux curves and heat transfer coefficients are also provided to a benchmark data for the actual spray cooling of hot steel plate cooling applications.