• Title/Summary/Keyword: Heat Sink Heat Exchanger

Search Result 47, Processing Time 0.024 seconds

Optimal Design of a Heat Exchanger with Vortex Generator (와류발생기가 부착된 열교환기 최적설계)

  • Park, Kyoung-Woo;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1219-1224
    • /
    • 2004
  • In this study the optimization of plate-fin type heat sink with vortex generator for thermal stability is conducted numerically. To acquire the optimal design variables, the CFD and mathematical optimization are integrated. The flow and thermal fields are predicted using the finite volume method. The optimization is carried out by means of the sequential quadratic programming (SQP) method. The results show that when the temperature rise is less than 40 K, the optimal design variables are as follows; $B_1=2.584mm$, $B_2=1.741mm$, and t = 7.914 mm. Comparing with the initial design, the temperature rise is reduced by 4.2 K, while the pressure drop is increased by 9.43 Pa. The Pareto optimal solutions are also presented between the pressure drop and the temperature rise.

  • PDF

PX-An Innovative Safety Concept for an Unmanned Reactor

  • Yi, Sung-Jae;Song, Chul-Hwa;Park, Hyun-Sik
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.268-273
    • /
    • 2016
  • An innovative safety concept for a light water reactor has been developed at the Korea Atomic Energy Research Institute. It is a unique concept that adopts both a fast heat transfer mechanism for a small containment and a changing mechanism of the cooling geometry to take advantage of the potential, thermal, and dynamic energies of the cold water in the containment. It can bring about rapid cooling of the containment and long-term cooling of the decay heat. By virtue of this innovative concept, nuclear fuel damage events can be prevented. The ultimate heat transfer mechanism contributes to minimization of the heat exchanger size and containment volume. A small containment can ensure the underground construction, which can use river or seawater as an ultimate heat sink. The changing mechanism of the cooling geometry simplifies several safety systems and unifies diverse functions. Simplicity of the present safety system does not require any operator actions during events or accidents. Therefore, the unique safety concept of PX can realize both economic competitiveness and inherent safety.

Heating Performance of Horizontal Geothermal Heat Pump System for Protected Horticulture (시설원예용 수평형 지열히트펌프의 난방 성능 해석)

  • Kang, Youn-Ku;Ryou, Young-Sun;Kang, Geum-Choon;Paek, Yee;Kim, Young-Joong
    • Journal of Biosystems Engineering
    • /
    • v.32 no.1 s.120
    • /
    • pp.30-36
    • /
    • 2007
  • Geothermal heat pump systems use the earth as a heat source in heating mode and a heat sink in cooling mode. These systems can be used for heating or cooling systems in farm facilities such as greenhouses for protected horticulture, cattle sheds, mushroom house, etc. A horizontal type means that a geothermal heat exchanger is laid in the trench buried in 1.2 to 1.8 m depth. Because a horizontal type has advantages of low installation, operation and maintenance costs compared to a vertical type, it is easy to be adopted to agriculture. In this study, to heat and cool farm facilities and obtain basic data for practical application of horizontal geothermal heat pump systems in agriculture, a horizontal geothermal heat pump system of 10 RT scale was installed in greenhouse. Heating performance of this system was estimated. The horizontal geothermal heat pump used in this study had heating COP of 4.57 at soil temperature of 14$^{\circ}C$ for depth of 1.75m and heating COP of 3.75 at soil temperature of 7$^{\circ}C$ for the same depth. The stratification of water temperature in heat tank appeared during the whole heat rejection period.

Fabrication and characterization of Cu50-Fe50 alloy (Cu50-Fe50 합금의 제조 및 특성평가)

  • Lee, Jung-Il;Lam, Dilli;Paeng, Jong Min;Cho, Hyun Su;Yang, Su Min;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.4
    • /
    • pp.175-178
    • /
    • 2018
  • Copper is a well know material for use as heat sink or heat exchanger. However, copper has a considerable low tensile strength and temperature limit. A material that has a good thermal conductivity, low cost, but also excellent mechanical properties are desired. In order to identify the mechanism for the material properties of cast Cu-Fe alloys, $Cu_{50}-Fe_{50}$ (wt.%) alloy was produced by using a high-frequency induction furnace, a typical metal casting process. The Cu-Fe alloy consists of Cu, ${\alpha}$-Fe, ${\gamma}$-Fe with dendrite structures. The crystal structure and microstructure of the prepared $Cu_{50}-Fe_{50}$ alloy were systematically examined using XRD, FE-SEM, EDS and XRF for electrical devices.

A Study on Improvement of Extrudability for Extrusion Process of Heat Sink (방열판 직접압출공정의 성형성 향상에 관한 연구)

  • 이정민;김병민;강충길
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.422-428
    • /
    • 2004
  • At present, the design of extrusion dies and operation in extrusion companies are primarily based on trial and error. The experience of the die designer, the press operator and the die corrector determine the performance of the extrusion die and the efficiency of the process. In order to produce defect-free products of desirable quality in terms of strength, surface quality and geometrical dimensions, it is important to obtain more knowledge of the processes that occur during extrusion. Recently, to reduce the costs of designing and manufacturing of extrusion dies, and to ensure the quality of the extruded products, numerical simulation for extrusion processes such as FEM (finite element method) is applied increasingly and becomes a very important tool for the design and development of new products. However, most of the studies about FE simulation have been accomplished for simple geometry and low extrusion ratio in the filed of steady metal flow conditions. The extruded products of AI alloy in industrial practice involve complicated sectional geometry. This study was designed to reduce the time of die design and manufacturing in the extrusion process using FEM simulation. FEM simulations of extrusion process were performed in non-steady states conditions by changing weld plate included in extrusion die set. Product which was employed in this study is heat sink that has been used in the parts of heat exchanger of electric circuits. It is generally applied for aluminum or its alloys due to heat efficiency and easy production of complicated shapes, and manufactured by extrusion process. The simulated results showed that weld plate shape in extrusion dies influences meta] flow and dimensional accuracy of products.

The Operation Characteristics of a Sea Water Source Heat Pump System (해수열원 히트펌프 시스템의 운전특성)

  • Chang, Ki-Chang;Baik, Young-Jin;Ra, Ho-Sang;Kim, Ji-Young;Lee, Jae-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1353-1357
    • /
    • 2008
  • A sea water source cascade heat pump was designed and tested in this study. The system was designed to perform a single stage operation in summer, as well as a cascade operation in winter to ensure the high temperature lift. A steady-state simulation model was developed to analyze and optimize its performance. The simulation results show that the R717 exhibits best performance among combinations considered in this study. A R410A also exhibits the highest performance among HFCs with the smallest compressor displacement. A 15-RT R410A-R134a pilot system was installed in the 5-story commercial building at Samcheok City by the East Sea. A scroll type R410A compressor, a reciprocating type R134a compressor, plate type condenser/ evaporator/ cascade heat exchanger and two electronic expansion valves were used to build a pilot. A titanium plate type heat exchanger is also used for the heat exchanging with a sea water. The heat source/sink water is supplied from the well below the seashore in the depth of 5 m. In the initial test of the system, supply water temperature was rising up to $67^{\circ}C$ using a sea water heat source of $9^{\circ}C$, while an ambient temperature was $4.5^{\circ}C$.

  • PDF

A Design and Test of a Sea Water Source Heat Pump System (해수열원 히트펌프 시스템의 설계 및 운전)

  • Lee, Jae-Hun;Kim, Ji-Young;Baik, Young-Jin;Chang, Ki-Chang;Ra, Ho-Sang;Shin, Kwang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1273-1278
    • /
    • 2008
  • A sea water source cascade heat pump was designed and tested in this study. The system was designed to perform a single stage operation in summer, as well as a cascade operation in winter to ensure the high temperature lift. A steady-state simulation model was developed to analyze and optimize its performance. The simulation results show that the R717 exhibits best performance among combinations considered in this study. A R410A also exhibits the highest performance among HFCs with the smallest compressor displacement. A 15-RT R410A-R134a pilot system was installed in the 5-story commercial building at Samcheok City by the East Sea. A scroll type R410A compressor, a reciprocating type R134a compressor, plate type condenser/ evaporator/ cascade heat exchanger and two electronic expansion valves were used to build a pilot. A titanium plate type heat exchanger is also used for the heat exchanging with a sea water. The heat source/sink water is supplied from the well below the seashore in the depth of 5 m. In the initial test of the system, supply water temperature was rising up to $67^{\circ}C$ using a sea water heat source of $9^{\circ}C$, while an ambient temperature was $4.5^{\circ}C$.

  • PDF

Production Processes of Porous Metals and Their Applications (다공질 금속의 제조와 응용)

  • Shim, Jae-Dong;Byun, Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.155-164
    • /
    • 2015
  • Porous metals are called as a new material of 21th century because they show not only extremely low density, but also novel physical, thermal, mechanical, electrical, and acoustic properties. Since the late in the 1990's, considerable progress has been made in the production technologies of many kinds of porous metals such as aluminum, titanium, nickel, copper, stainless steel, etc. The commercial applications of porous metals have been increased in the field of light weight structures, sound absorption, mechanical damping, bio-materials, thermal management for heat exchanger and heat sink. Especially, the porous metals are promising in automotive applications for light-weighting body sheets and various structural components due to the good relation between weight and stiffness. This paper reviews the recent progress of production techniques using molten metal bubbling, metal foaming, gas expansion, hollow sphere structure, unidirectional solidification, etc, which have been commercialized or under developing, and finally introduces several case studies on the potential applications of porous metals in the area of heat sink, automotive pannel, cathod for Ni-MH battery, golf putter and medical implant.

A Study on An Integrated GEO/TES with Geothermal Heat Exchanger and Thermal Ice Storage (지중열 교환기와 빙축열조(Thermal Ice Storage)를 연계시킨 통합 지중열-빙축열조 시스템(Integrated GEO/TES))

  • Lohrenz ED.;Hahn Jeongsang;Han Hyuk Sang;Hahn Chan;Kim Hyoung Soo
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.717-729
    • /
    • 2005
  • Peak cooling load of large buildings is generally greater than their peak heating load. Internal and solar heat gains are used fur selection of adquate equipment in large building in cold winter climate like Canada and even Korea. The cost of geothermal heat exchanger to meet the cooling loads can increase the initial cost of ground source heat pump system to the extend less costly conventional system often chosen. Thermal ice storage system has been used for many years in Korea to reduce chiller capacity and shift Peak electrical time and demand. A distribution system designed to take advantage of heat extracted from the ice, and use of geothermal loop (geothermal heat exchanger) to heat as an alternate heat source and sink is well known to provide many benifits. The use of thermal energy storage (TES) reduces the heat pump capacity and peak cooling load needed in large building by as much as 40 to $60\%$ with less mechanical equipment and less space for mechanical room. Additionally TES can reduce the size and cost of the geothermal loop by 1/3 to 1/4 compared to ground coupled heat pump system that is designed to meet the peak heating and cooling load and also can eliminate difficuties of geothermal loop installation such as space requirements and thermal conditions of soil and rock at the urban area.

Performance for Geothermal Heating & Cooling System by Heatpump in Office Building (사무용건물에서 지열히트펌프냉난방시스템의 운전성능 평가)

  • An, Hyung-Jun;Baek, Sung-Kwon;Cho, Chung-Sik;Sohn, Byung-Hu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.1
    • /
    • pp.23-29
    • /
    • 2007
  • For the perfomance test of geothermal system, a large pilot of capacity of 50RT is built and operated in office building. This system is planed hybrid system with cooling tower as asisstance heat sink. From October, 2004 to September, 2005, this system is operated andmonitored. As the result, COP of heating periods is about 3.46 and COP of cooling periods is about 4.1. Therefore, geothermal system is useful and suitable in Korea.

  • PDF