• Title/Summary/Keyword: Heat Release Ratio

Search Result 190, Processing Time 0.019 seconds

A Study for the Fire Retardant-Characteristics of Expandable Graphite Composite Materials (팽창흑연을 사용한 복합재료의 난연 특성에 관한 연구)

  • Chun, Kwan-Ok;Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.28-33
    • /
    • 2017
  • In this study, the composite material of expandable graphite was made to the material development for improving such as a composite material of the sandwich panels or material properties of a fire door and was tested by the ISO 1182, ISO 5660-1(Cone calorimeter Method). For the test, the composite material of expandable graphite, what the expandable graphite ratio was increased by respectively 0g~30g, was classified A1,A2, A3, A4, and made to the test specimens. Through cone calorimeter test, peak heat release rate(HRR) and total heat release(THR), expanded thickness and expansion rate of each composite material of expandable graphite, and fire prone crack and mass loss rate after burning was measured. Thus, the effect of the addition of the expandable graphite and whether is suitable for reference as a fire retardant, was analyzed. Consequently the correlation of THR and fire retardant performance rate was confirmed.

A Study on the Thermal Characteristics of a $MgO/H_2O$ Chemical Heat Pump ($MgO/H_2O$ 계 화학식 열펌프의 열적 특성에 관한 연구)

  • ;;;;Yukitaka Kato
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.34-41
    • /
    • 2004
  • The chemical heat pump based on the Dehydration/Hydration process with a MgO/$H_2O$ system has been researched. The reactor bed could be expected to store the heat around 200∼37$0^{\circ}C$ by the dehydration reaction and to release the heat around 100∼16$0^{\circ}C$ by the hydration reaction under the heat amplification mode operation. The heat output rate of the heat pump system was evaluated using the experimentally determined parameters. The results show that 6∼50 W/kg of heat output and 0.5∼0.8 of heat recovery ratio are attainable. The heat pump will be applicable for a load leveling in a co-generation system by chemical storage of surplus heat at low heat demand and by supplying heat in the peak load period.

A Study on the Effects of EGR on Engine Performance and Emissions of a HCCI(Homogeneous Charge Compression Ignition) Engine (HCCI 엔진에서 엔진성능 및 배출에 미치는 EGR의 영향)

  • Han, Sung-Bin;Chang, Yong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1630-1636
    • /
    • 2003
  • Automobile companies and research institutions in leading automobile-manufacturing nations have recently been very active with research regarding the HCCI engine for use in future vehicles. Because HCCI engines take advantage of high compression ratio and heat release rate, they exhibit high efficiency found in compression ignition engines. HCCI engines also utilize a lean air/fuel ratio resulting in low emissions of NO$_{x}$ and PM (particulate matter). The objective of this research is to determine the effects of EGR rate on the combustion processes of HCCI. for this purpose, a 4-cylinder, compression ignition engine was converted into a HCCI engine, and a heating device was installed to raise the temperature of the intake air and also to make it more consistent. In addition, a pressure sensor was inserted into each of the cylinders to investigate the differences in characteristics among the cylinders. The experimental study of the effects of EGR rate on various gas emissions, engine performance, etc. should prove to be a valuable source of information for the development of the HCCI engine.e.

Effect of inlet air humidity on the combustion process of the spark-ignition engine (흡입습도가 스파아크 점화기관의 연소과정에 미치는 영향)

  • 김문헌;이성열
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.41-47
    • /
    • 1983
  • The analysis shows that the variation of maximum pressure of the cycle, rate of hear release, rate of mass burned, and combustion delay are influenced by the inlet air humidity in the spark-ignition engine. The quantitative combustion delay can be obtained from the rate of mass burned. Also, the variation of time loss and effective compression ratio with the change of inlet air humidity are dominated by the development of rate of heat release.

  • PDF

Effects of Change in Heat Release Rate on Unsteady Fire Characteristics in a Semi-Closed Compartment (반밀폐된 구획에서 발열량 변화에 따른 비정상 화재특성)

  • Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.75-83
    • /
    • 2012
  • An experimental study was conducted to investigate the effects of change in heat release rate on unsteady fire characteristics of under-ventilated fire in a semi-closed compartment. A standard doorway width of the full-scale ISO 9705 room was modified to 0.1 m and the flow rate of heptane fuel was increased linearly with time using a spray nozzle located at the center of enclosure. Temperature, heat flux, species concentrations and heat release rate were continuously measured and then global equivalence ratio (GER) concept was adopted to represent the unsteady thermal and chemical characteristics inside the compartment. It was observed that there was a significant difference in unsteady behavior between global and local combustion efficiency, and the GERs predicted by ideal and measured heat release rate were also shown different results in time. The unsteady behaviors of temperature, heat flux and species concentrations were represented well using the GER concept. It was important to note that CO concentration was gradually decreased with the increase in GER after reaching its maximum value in the range of 2.0~3.0 of global equivalence ratio. In addition, the experimental data on unsteady thermal and chemical behaviors obtained in a semi-closed compartment will be usefully used to validate a realistic fire simulation.

Controlled Release of Gentamicin Sulfate from Poly(3-hydroxybu-tyrate-co-3-hydroxyvalerate) Wafers for the Treatment of Osteomyelitis

  • Gilson Khang;Park, Hak-Soo;John M. Rhee;Yoon, Sung-Chul;Cho, Jin-Cheol;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.8 no.6
    • /
    • pp.253-260
    • /
    • 2000
  • Biodegradable wafers were prepared with poly (hydroxybutyrate-co-hydroxyvalerate) (PHBV;5, 10, and 15 mole% for 3-hydroxyvalerate) by simple heat pressing method for the sustained release of antibiotic agent, gentamicin sulfate (GS) to investigate the possibility of the treatment for osteomyelitis. The effects of hydroxyvalerate (HV) content, thickness of wafers, various types of additives such as sodium dodecyl sulfate (SDS), microcrystalline cellulose, polyvinylpyrrolidone, and hydroxypropylcellulose (HPC), and different initial drug loading ratio on the release profile have been investigated. In vitro release studies showed that different release patterns and rates could be achieved by simply modifying factors in the preparation conditions. PHBV wafers with 3 mm thickness, 10% of GS initial loading, 15% of HV content and addition of 5% of SDS and HPC were free from initial burst and a near-zero-order sustained release was observed for over 30 days. It might be suggested that the mechanisms of G5 release may be more predominant simple dissolution and diffusion of GS than erosion of PHBV in our system.

  • PDF

Combustion Characteristics of a Small Diesel Engine Converted to Spark Ignition Operation and Fuelled with Natural Gas (디젤 기관을 개조한 소형 전기점화식 천연가스기관의 연소 특성 연구)

  • Park, S.;.Thomas, D. G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.65-77
    • /
    • 1996
  • A small-sized industrial diesel engine was converted to a spark ignited engine and then adapted for fuelling with natural gas. After conversion work, general combustion characteristics of the gas engine(such as ignition delay, main and total combustion durations, and heat release characteristics) were studied as a functio of major engine operating variables such as air to fuel ratio, spark timing, and spark plug type. Some other studies on cyclic variation characteristics in IMEP, Pmax and (dp/dφ)max, and also optimum combustion phasing angle were performed.

  • PDF

A Study on the Combustion Characteristic and Soot Distribution of a Common Rail Type D.I.Diesel Visualized Engine with Pilot Injection (파일럿 분사시의 커먼레일식 직분식 가시화 디젤엔진의 연소 및 Soot분포 특성에 관한 연구)

  • 이재용;한용택;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.37-43
    • /
    • 2003
  • The objective of this work is to investigate the effect of swirl, injection pressure and pilot injection on D.I. diesel combustion by using a transparent engine system. The test engine is equipped with common rail injection system to obtain high pressure and to control injection timing and duration. In this study, the combustion analysis and steady flow test were conducted to estimate the heat release rate from in-cylinder pressure. Soot distribution in diffusion flame according to swirl ratio, injection pressure and pilot injection was investigated by using LII technique. As the results, high injection pressure was found to shorten ignition delay as well as enhance peak pressure and heat release rate was greatly affected by injection timing and pilot injection. In addition, the results showed that the period of soot formation corresponded to the diffusion flame.

Effects of Natural Gas Composition on Combustion Characteristics in a Gas Engine (쳔연가스 연료조성이 엔진 연소특성에 미치는 영향)

  • 이중성;유현석;윤영석;한정옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.32-41
    • /
    • 1999
  • Natural gas is an attractive fuel in view of environment benefits due to its flow carbon-to-hydrogen ratio. However, its compositions and properties are varied depending upon production regional groups. Therefore, study on the combustion characteristics of natural gas engines with a variety of compositions has been demanded for the efficient application of gas engines. This study aims to investigate the effects of gas composition on engine combustion characteristics. It was found that , by controlling an engine with fixed fuel nozzle area, power and heat release were subject to Wobbe Index. And at fixed excess air ratios, power and heat release were subject to low heating value of unit mixture . In addition, in case of constant nozzle area, combustion duration was found to be inversely proportional to CP(Combustion Potential), and the condition of fixed excess air ratios showed no change in combustion duration, regardless of CP.

  • PDF

A study on the engine performance in a multiple spark ignition engine (다회수 스파크 점화기관의 기관성능에 관한 연구)

  • 이성열;한병호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.66-74
    • /
    • 1988
  • The ignition quality of ignition system is influenced by spark energy, discharge pattern of spark energy and spark duration. In this paper, the characteristics of multiple spark ignition system have been investigated for various number of spark and spark interval. The results, which were compared with those obtained with a standard single spark ignition, show that engine output is increased, and lean misfire limit is extended with the multiple spark ignition system. The most effective number of spark at the most effective spark interval that are determined by engine performance test, were 6 times spark at 0.02ms spark interval. For the above condition of spark, engine torque was increased about 20% comparing with conventional ignition system and lean misfire limit was extended to air-fuel ratio 22.5:1. This study researched the rate of heat release and quantity of heat release influenced by a condition of spark on the mass burned in order to investigate the relationship between the rate of mass burned and number of spark times.

  • PDF