• 제목/요약/키워드: Heat Rate

검색결과 5,944건 처리시간 0.032초

PF 열교환기의 열전달과 압력강하 특성 실험 연구 (Experimental of Study on Heat Transfer and Pressure drop of PF Heat Exchangers)

  • 엄유식;서동남;박경만;이상재;김대훈;권영철
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.519-524
    • /
    • 2008
  • In the present study, the air-side heat transfer and pressure drop characteristics of the fin-tube and PF heat exchangers have been experimentally investigated under the cooling standard condition. Fin type of PF heat exchanger is a triangler and squarer form. The experimental data of the slit fin-tube and two kinds of PF heat exchangers are measured using the air-enthalpy calorimeter and the constant temperature water bath. As the inlet air velocity increases, the heat transfer rate and pressure drop of the heat exchanger increased. The heat transfer rate and pressure drop of PF-2 heat exchanger of the squarer fin is larger than that of PF-1 heat exchanger of the triangler fin. As the inlet air temperature increases, the heat transfer rate decreases and the pressure drop is nearly uniform.

  • PDF

분무냉각에 있어서 임계열유속 상관식에 관한 연구 (Study on Correlation of Critical Heat Flux in Spray Cooling)

  • 김영찬
    • 한국분무공학회지
    • /
    • 제23권3호
    • /
    • pp.109-113
    • /
    • 2018
  • The critical heat flux of spray cooling were measured on the test surface of 10 mm diameter made by stainless steel. The experiments were carried out for the droplet-flow-rate of $0.00002{\sim}0.003m^3/(m^2s)$ and liquid subcooling temperature of $40{\sim}75^{\circ}C$. Experimental results showed that the critical heat flux of spray cooling increased remarkably with the increase of droplet-flow-rate. Meanwhile, the effect of liquid subcooling on critical heat flux of spray cooling appeared weakly under the present experimental conditions. In additions, correlation between the dimensionless critical heat flux and Weber number based on droplet-floe-rate was developed for experimental results.

직사각형 덕트에서 전단율에 의존적인 열전도율을 갖는 비뉴턴 유체의 열전달 향사아에 관한 수치적 연구 (Numerical heat transfer in a rectangular duct with a non-newtonian fluid with shear-rate dependent thermal conductivity)

  • 김병석;신세현;손창현
    • 대한기계학회논문집B
    • /
    • 제21권6호
    • /
    • pp.773-778
    • /
    • 1997
  • The present study investigates the effect of the shear rate-dependent thermal conductivity of non-newtonian fluids on the heat transfer enhancement in a 2:1 rectangular duct flow. An axially-constant heat flux and a peripherally-constant temperature boundary conditions(H1) was adopted for a top-wall-heated configuration. The present numerical results of Nusselt numbers for SRDC(Separan) show heat transfer enhancement over those of SRIC. The Nusselt numbers increased linearly as Reynolds numbers increased. The heat transfer enhancement is due to an increased thermal conductivity near the wall, which is attributed to the shear rate-dependence.

기포 펌프를 적용한 흡수식 열펌프용 고온 재생기의 작동 특성 실험 (Experiments on a Regenerator with Thermosyphon for Absorption Heat Pumps)

  • 박찬우;정종수;남평우
    • 설비공학논문집
    • /
    • 제8권4호
    • /
    • pp.463-472
    • /
    • 1996
  • Experiments were carried out to study the operation characteristics of a regenerator with a thermo-syphon pump and a surface-flame burner for a lithium bromide (LiBr)-water absorption heat pump. A cylindrical-shape metal-fiber burner and commercial grade propane were used. The emission of carbon monoxide and nitric oxide was measured by a combustion gas analyzer. Ther regeneration rate of water vapor as a refrigerant was measured. It could be as a reference value showing the performance of the regenerator. The circulation rate of the LiBr-water solution was also measured from both the tanks for the weak-and the strong-solution. Using a refractometer, the LiBr concetration in the solution was calculated from the measured refractory index of the solution. Temperature of the solution and the condensed water was recorded at several points in the experimental apparatus with thermocouples, using a personal computer. This data collecting system for measuring temperature was calibrated with a set of standard thermometers. The generating rate of water vapor as refrigerant increased linearly with heat supplied. It was about 4.0g/s with the heat supplied at a rate of 16,500kcal/h. The circulation rate of LiBr solution also increases with the heat supplied. The difference in LiBr concentrations between the weak and the strong solution was in the range of 1 to 5% when the concentration of the strong solution was about 60%. It was dependent upon both the heat supplied and the circulation rate of the solution. The initial concentration and the level of the LiBr solution in the regenerator were measured and recorded before experiments. The effect of them on the generating rate of water vapor and the circulation rate of the solution was also studied. The generating rate of water vapor was not strongly dependent upon both the level of the LiBr solution and the initial LiBr concentration. However, the concentration difference of the solution increases with the initial level of the LiBr solution.

  • PDF

미소 중력장에 있는 저신장율 화염소화에 미치는 다차원 효과 (Multi-Dimensional Effects on a tow Strain Rate Flame Extinction Under Microgravity Environment)

  • 오창보;김정수;;박정
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.988-996
    • /
    • 2005
  • Flame structure and extinction mechanism of counterflow methane/air non-premixed flame diluted with nitrogen are studied by NASA 2.2 s drop tower experiments and two-dimensional numerical simulations with finite rate chemistry and transport properties. Extinction mechanism at low strain rate is examined through the comparison among results of microgravity experiment, 1D and 2D simulations with a finite burner diameter. A two-dimensional simulation in counterflow flame especially with a finite burner diameter is shown to be very important in explaining the importance of multidimensional effects and lateral heat loss in flame extinction, effects that cannot be understood using a one-dimensional flamelet model. Extinction mechanism at low strain rate is quite different from that at high strain rate. Low strain rate flame is extinguished initially at the outer flame edge, the flame shrinks inward, and finally is extinguished at the center. It is clarified from the overall fractional contribution by each term in energy equation to heat release rate that the contribution of radiation fraction with 1D and 2D simulations does not change so much and the overall fractional contribution is decisively attributed to radial conduction ('lateral heat loss'). The experiments by Maruta et at. can be only completely understood if multi-dimensional heat loss effects are considered. It is, as a result, verified that the turning point, which is caused only by pure radiation heat loss, has to be shifted towards much lower global strain rate in microgravity flame.

열손실에 의한 확산-열 불안정성의 가속화 (Acceleration in Diffusive-thermal Instability by Heat Losses)

  • 박준성;박정;김정수
    • 한국연소학회지
    • /
    • 제12권2호
    • /
    • pp.34-41
    • /
    • 2007
  • The dynamic behaviors of counterflow non-premixed flame have been investigated experimentally to study effects of heat losses and Lewis number on edge flame oscillation, which result from the advancing and retreating edge flame motion of outer flame edge at low strain rate flame. For low strain rate flame, lateral conduction heat loss in addition to radiation heat loss could be more remarkable than the others. Oscillatory instabilities appear at fuel Lewis number greater than unity. But excessive lateral conduction heat loss causes edge flame instability even at fuel Lewis number less than unity. The excessive heat loss caused by the smaller burner diameter in which the flame length is an indicator of lateral conduction heat loss extends the region of flame oscillation and accelerates oscillatory instability in comparison to the previous study with the burner diameter of 26mm. Extinction behaviors quite different from the previous study are also addressed.

  • PDF

액적 유량과 분무냉각 막비등 열전달의 상관관계에 관한 연구 (Study on Correlation of Droplet Flow Rate and Film Boiling Heat Transfer in Spray Cooling)

  • 윤승민;김영찬
    • 대한기계학회논문집B
    • /
    • 제31권4호
    • /
    • pp.335-340
    • /
    • 2007
  • A new correlation between the Nusselt number based on modified heat transfer coefficient and Reynold number based on droplet-flow-rate was developed for the experimental data. The modified heat transfer coefficient was defined as ratio of wall heat flux to droplet subcooling. In the previous reports, the local heat flux of spray cooling in the film boiling region was experimentally investigated for the water spray region of $D_{max} = 0.0007{\sim}0.03m^3/(m^2s)$ . In the region near the stagnation point of spray flow, a new heat transfer correlation is recommended which shows good predictions for the water spray region of $D_x{\le}0.01m^3/(m^2s)$.

초음파진동을 이용한 미세분무냉각 열전달에 관한 실험적 연구 (The Experimental Study on Mist Cooling Heat Transfer)

  • 김영찬
    • 한국분무공학회지
    • /
    • 제15권4호
    • /
    • pp.202-207
    • /
    • 2010
  • Mist cooling is widely employed as a cooling technique of high temperature surfaces, and it has heat transfer characteristics similar to boiling heat transfer which has the convection, nucleate and film boiling regions. In the present study, mist cooling heat transfer was experimentally investigated for the mist flow impacting on the heated surfaces of mico-fins. The mist flow was generated by supersonic vibration. Experiments were conducted under the test conditions of droplet flow rate, $Q=6.02{\times}10^{-9}{\sim}3.47{\times}10^{-8}\;m^3/s$ and liquid temperature, $T_f=30{\sim}35^{\circ}C$. From the experimental results, it is found that an increase in the droplet flow rate improves mist cooling heat transfer in the both case of smooth surface and surfaces of micro-fins. Micro-fins surfaces enhance the mist cooling heat transfer. Besides, the experimental results show that an increase in the droplet flow rate decrease the heat transfer efficiency of mist cooling.

마이크로터빈의 열회수 성능시험 (Test of Heat Recovery Performance of a Microturbine)

  • 전무성;이종준;김동섭;장세동
    • 대한기계학회논문집B
    • /
    • 제32권8호
    • /
    • pp.629-635
    • /
    • 2008
  • Recently, microturbines have received attention as a small-scale distributed power generator. Since the exhaust gas carries all of the heat release, the microturbine CHP (combined heat and power) system is relatively compact and easy to maintain. Generating hot water or steam is usual method of heat recovery from the microturbine. In this work, a heat recovery unit producing hot water was installed at the exhaust side of a 30 kW class microturbine and its performance characteristics following microturbine power variation was investigated. Heat recovery performance has been compared for different operating conditions such as constant hot water temperature and constant water flow rate. In particular, the influence of water flow rate and hot water temperature on the recovered heat was analyzed.

순간(瞬間)아아크 용접열(熔接熱)에 의(依)한 모재내(母材內)의 일차원적(一次元的) 온도분포(溫度分布) (One Dimensional Temperature Distribution in the Base Metal due to Transient Arc welding Heat)

  • 박종은
    • 대한조선학회지
    • /
    • 제9권2호
    • /
    • pp.49-55
    • /
    • 1972
  • The temperature distribution and cooling rate play an important role in the investigation of heat affected zone of weldment. All the problems such as metallurgical changes, welding thermal stress, welding residual stress and welding deformation in the heat affected zone of welded joint are due to the temperature distribution and cooling rate. In this paper, one dimensional temperature distribution and cooling rate due to transient arc welding heat in the heat affected zone of the base metal are studied. Heat transfer equation for one dimensional heat flow is formed, and solution is obtained. Weld heat input formula is also formed and used. Computed numerical results show a good agreement with the experimented temper color.

  • PDF