• 제목/요약/키워드: Heat Pump System

검색결과 1,120건 처리시간 0.027초

차량용 이산화탄소 열펌프 시스템의 냉난방 성능 비교평가 (Comparative Evaluation of the Cooling and Heating Performance of a $CO_2$ Heat Pump System for Vehicles)

  • 김성철;김민수
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.126-131
    • /
    • 2009
  • A $CO_2$ heat pump system was designed for both cooling and heating in the cabin of electric vehicles, hybrid vehicles or fuel cell vehicles, In this study, the performance characteristics of the heat pump system without any supplementary heating device were analyzed and the heating performance was compared with the cooling performance for various operating conditions. Experiments were carried out by changing the speed of electric drive compressor, the air flow rate of interior heat exchanger and the air inlet temperature and speed of exterior heat exchanger. Therefore, the cooling/heating capacities and the corresponding COPs are quantified. Also, the heat pump system showed an improved performance for the cooling operation and the heating operation. In this study, the experimental results can be used to evaluate the effect of system design changes on system performance as well as the development of a highly efficient heat pump system.

시설원예용 대온도차 지열원 히트펌프 운전비용 효과 분석 (Operating Cost Analysis of a High Temperature Ground Source Heat Pump System for a Greenhouse)

  • 강신형;박승병;최종민
    • 한국지열·수열에너지학회논문집
    • /
    • 제12권1호
    • /
    • pp.17-22
    • /
    • 2016
  • It is very important to obtain a out-of season production in horticultural greenhouses corresponding with higher crop prices. A ground source heat pump system has been highly spotlighed as an energy efficient heating system for the greenhouse. This paper investigated the operating cost of the ground source heat pump system with the variation of generating temperature and designing methods for heating system of the greenhouse. Even though the COP of the ground source heat pump system decreased with an increment of generating temperature in heating mode, the operating cost could be reduced. By adopting the high temperature heat pump system and heat storage tank, it could be achieved to save energy and reduce the operating time of auxiliary oil heating system for producing good plant-growth in the greenhouse.

연간 성능을 고려한 가정용 태양열-흡수식 히트펌프의 에너지 절약효과 분석 (An Analysis of Energy Savings on the Solar-Absorption Heat Pump Systems for the Residential Use with the consideration of Annual Performance)

  • 이재효;이관수;원승호;이명호
    • 설비공학논문집
    • /
    • 제3권4호
    • /
    • pp.263-275
    • /
    • 1991
  • Studies on the annual performance of three different type of solar-absorption heat pump system (parallel type, series type, and generator type) are carried out by using the computer simulation. These include the calculation of solar energy from the solar collector, and the revision of computer package, developed by Oak Ridge National Laboratory, to predict the annual performance. Finally using weather data and load conditions, the annual performance are obtained. Results show that the annual operating costs of three solar-absorption heat pump systems are almost same values and 44% lower than that of the pure absorption heat pump system. The total annual input energys of solar-absorption heat pump systems are also about 44% lower than that of the pure absorption heat pump. The nominal size of the solar-absorption heat pump systems can be reduced to a value of 55% that of the pure absorption heat pump that would normally be specified under identical conditions.

  • PDF

열펌프 시스템의 난방 운전 시 최적 성능 제어에 관한 연구 (A Study on the Optimal Performance Control of Heat Pump System for Heating Mode Operation)

  • 유근중;이일환;이길봉;김민수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.669-674
    • /
    • 2006
  • The optimal control of heat pump performance for heating mode operation was investigated. Fuzzy logic was applied to control the heating performance of heat pump system and superheat at compressor discharge was taken as a control variable. Regression model was adapted to determine the optimal points where COP is maximized. Optimization of fuzzy rule table was investigated to improve operation performance of heat pump system. Experiments were carried out using original fuzzy table and the modified fuzzy rule table for heating mode operation of heat pump system. The results show that control performance of heat pump system with the modified fuzzy rule table was better than that with the original rule table.

  • PDF

온실난방을 위한 히트펌프의 성능에 관한 연구 (A Study on the Greenhouse Heating Performance of Heat Pump System)

  • 윤용철;서원명;이석건
    • 한국농공학회지
    • /
    • 제40권3호
    • /
    • pp.94-102
    • /
    • 1998
  • This experiment was carried out to study on the effect of greenhouse heating by water-to-water heat pump system employing heating water tank(ground water) as the heat source. Followings are the results obtained from this study ; 1. The heat amount absorbed from evaporator and the heat amount rejected from condenser were approximately 9, 000~ 12, 000kcal/h and 13, 000~ 17, OOOkcal/h, respectively. 2. The heat efficiencies of evaporator and condenser used in this experiment were approximately 79% and 83%, respectively. 3. The maximum heating load estimated for the experimental greenhouse was about 18, 000 ~ 25, OOOkcal/h, which was found to be about 28 ~ 32% higher than the heating capacity of the heat pump system adopted for this experiment. 4. The coefficients of performance(COP) for the heat pump and the total heat pump system were approximately 2.9~3.5 and 1.5~2.4, respectively. 5. The coefficient of performance(COP) calculated from the Mollier Diagram was about 3.2 ~ 3.4, which was reasonably close to the COP estimated on the basis of measured values. 6. The temperature of experimental greenhouse heated by the heat pump system could be maintained about 12~15 。C higher than that of a control greenhouse.

  • PDF

냉각탑을 이용한 축열식 히트펌프시스템의 성능측정에 관한 연구 (A study on performance test of water heat storage type heat-pump system using cooling tower heat source)

  • 이상훈;박효식;한우용;김욱중
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1099-1104
    • /
    • 2008
  • Recent year, mean energy consumptions of a people are higher than other country. And international oil price became over 120 dollar. This energy environment as well as energy war. Maybe, the Meteorological Administration is going to enforce scorching heatwave special report system from that come summer. Besides, 2008 summer, maximum demand power is expected by 64,240,000kW. The electric power equipment reserve rate appeared in to keep 12.5% level. Chilled water storage system witch is one of electric load administration system. Heat pump system used cooling tower heat recovery is advantage that use is possible to summer in small a public bath building. In this paper, we suggest that heat pump system by heat recovery using cooling tower when it is heating operation of ambient air temperature. To apply cooling tower heat recovery heat pump to chilled water heat storage type and achieved performance evaluation about operation. As a result, performance of heat pump system that about 121% in cooling mode, 138% in heating mode higher than KEPCO standard. And heating operation possible to ambient air temperature about $23^{\circ}C$, which of appear cooling tower outlet temperature about $13^{\circ}C$.

  • PDF

가스 인젝션을 적용한 전기자동차용 히트펌프의 난방성능 특성에 대한 실험적 연구 (An Experimental Study on the Heating Performance Characteristics of a Vapor Injection Heat Pump for Electric Vehicles)

  • 김동우;정종호;김용찬
    • 설비공학논문집
    • /
    • 제26권7호
    • /
    • pp.308-314
    • /
    • 2014
  • A heat pump has been considered as a thermal management unit for electric vehicles, including the heating and cooling of the cabin. However, the heat pump shows performance degradation at low outdoor temperatures or high compressor speeds. In this study, a R-134a heat pump for an electric vehicle was designed to improve system efficiency, by applying vapor injection with an internal heat exchanger. The heating performance characteristics of the vapor injection heat pump were analyzed at various compressor speeds and outdoor temperatures. The vapor injection heat pump showed 13.3% COP improvement over the non-injection heat pump, when the heating capacity was fixed at 5.2 kW. In addition, the heating capacity of the vapor injection system increased by 9.6%, as compared to the non-injection system.

하이브리드 제습냉방시스템의 성능평가 연구 (A Study on the Performance Evaluation of a Hybrid Desiccant Cooling System)

  • 황원백;김용찬;이대영
    • 설비공학논문집
    • /
    • 제24권2호
    • /
    • pp.121-128
    • /
    • 2012
  • Improvement in the energy efficiency has been studied of the desiccant cooling system by applying a vapor compression type heat pump to modify the system into a hybrid system. The cycle simulation was performed and the results were compared between a reference desiccant cooling system composed of a desiccant rotor, a sensible rotor and a regenerative evaporative cooler, and a hybrid desiccant cooling system with the sensible rotor being replaced by a heat pump. Though the electric consumption increases as much as the compressor power consumption, the total cooling capacity increases and the thermal energy input decreases by the addition of the heat pump. Therefore, the total energy efficiency can be improved if the increase in the electric consumption can be compensated with the increase in the cooling capacity and the decrease in the thermal energy input. The results showed that the total energy efficiency is optimized at a certain heat pump capacity. When the heat from the CHP plant is used for the thermal energy input, the energy consumption of the hybrid system is reduced by 20~30% compared with the reference system when the heat pump shares 30~40% of the total cooling capacity.

고효율엔진 차량 히트펌프 시스템 개발 (Development of Heat Pump System for High Efficiency Engine Vehicle)

  • 박병덕;원종필;이원석
    • 한국산업융합학회 논문집
    • /
    • 제10권1호
    • /
    • pp.21-26
    • /
    • 2007
  • As DDI or GDI engine discharges very low heat due to its high thermal efficiency, the heat source is not enough for heating the passenger compartment in cold climate condition. To remedy the heating problem, the conventional HFC-134a automotive air-conditioning system has been attempted to run as a heat pump mode. Futhermore, an auxiliary electric heater of new type was equipped to the heat pump air-conditioning loop as a new approach. Hence, a proto-type heat pump air conditioner has been made and tested to investigate the feasibility of the HFC-134a automobile air-conditioning system that could be worked as a heat pump. The experiment results showed that the sufficient heating capacity could be obtained by adding a heat pump with an new electric type auxiliary heater into the conventional heat core in low temperature condition.

  • PDF

공기 및 지열 이용 Dual-Source 히트펌프 시스템의 성능실험 및 경제성 분석 (The Performance Test and the Feasibility Study for a Dual-Source Heat Pump System Using the Air and Ground Heat Source)

  • 남유진;채호병
    • 설비공학논문집
    • /
    • 제26권5호
    • /
    • pp.212-217
    • /
    • 2014
  • Recently, the use of renewable energy has been increased due to growing concern on the energy-saving at buildings and the reduction of $CO_2$ emission. In the field of architecture, to reduce the energy consumption of heating, cooling and hot water supply, heat pump systems with renewable energy has been developed and used in various applications. However, there have been many of researches on the large-scale commercial heat pump systems, but the research and the field application of a compact heat pump system is rare. Therefore, in order to develop the compact heat pump for the small-scale residential building, this study conducted the performance test and feasibility study for a hybrid heat pump using the heat source of air, solar and ground. In the results of experiments through a trial product, the average COP of cooling mode with ground heat source was 4.75, and it of heating mode was 4.03. Furthermore, the average COP of cooling mode with air heat source was 2.60, and it of heating mode was 2.92. Finally, payback period of the system was calculated as 9.2 years.