• 제목/요약/키워드: Heat Load Simulation

검색결과 251건 처리시간 0.033초

Modeling and Investigation of Multilayer Piezoelectric Transformer with a Central Hole for Heat Dissipation

  • Thang, Vo Viet;Kim, In-Sung;Jeong, Soon-Jong;Kim, Min-Soo;Song, Jae-Sung
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.671-676
    • /
    • 2011
  • A multilayer square-type piezoelectric transformer with a hole at the center was investigated in this paper. Temperature distribution at the center was improved by using this construction, therefore increasing input voltage and output power. This model was simulated and investigated successfully by applying a finite element method (FEM) in ATILA software. An optimized structure was then fabricated, examined, and compared to the simulation results. Electrical characteristics, including output voltage and output power, were measured at different load resistances. The temperature distribution was also monitored using an infrared camera. The piezoelectric transformer operated at first radial vibration mode and a frequency area of 70 kHz. The 16 W output power was achieved in a three-layer transformer with 96% efficiency and $20^{\circ}C$ temperature rise from room temperature under 115 V driving voltage, 100 ${\Omega}$ matching load, $28{\times}28{\times}1.8mm$ size, and 2 mm hole diameter. With these square-type multilayer piezoelectric transformers, the temperature was concentrated around the hole and lower than in piezoelectric transformers without a hole.

금속패널지붕의 열교 방지를 위한 열교차단장치 개발 및 적용효과 분석 (Study of Thermal Bridge Breaker to Prevent the Thermal Bridge Effect on Metal Panel Roofs)

  • 김선호;정채봉;이충식;김종민;김병철
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.32-37
    • /
    • 2021
  • To realize a zero-energy building, a technology that minimizes the energy loss due to thermal bridges by preventing their formation is emerging as an important design factor. In this study, we develop a thermal bridge breaker to prevent thermal bridging in a metal panel roof and attempt to analyze the effects of its application. To this end, we fabricated a thermal bridge breaker and analyzed it in terms of its strength and heat-transfer characteristics, in addition to conducting a load simulation. The thermal bridge prevention effect of the developed thermal bridge breaker improved the insulation performance of the metal panel roof, and the results of a cooling/heating peak load simulation performed by applying the heat transmission resistance test results to a building proved the existence of this effect.

평면 연삭 가공시 발생하는 연삭열에 관한 연구 -해석적 모델-

  • 김동길;남원우;이상조
    • 한국정밀공학회지
    • /
    • 제18권1호
    • /
    • pp.187-194
    • /
    • 2001
  • The objective of this study is to develop a model for the grinding process for predicting the temperature, thermal stress and thermal deformation. The thermal load during grinding is modeled as uniformly distributed, 2D heat source moving across the surface of elastic half space, which is insulated or subjected to convective cooling. That non-dimensional temperature distribution, non-dimensional longitudinal stress distribution and non-dimensional thermal deformation distribution are calculated with non-dimensional heat source half width and non-dimensional heat transfer coefficient. Finite element models are developed to simulate moving heat source, which is modeled as uniformly or triangularly distributed, the FEM simulation is compared with numerical solution.

  • PDF

Modelling of a High Efficiency Refrigeration System with Heat Storage for Reverse Cycle Hot Gas Defrost

  • Ardiyansyah, Ardiyansyah;Choi, Kwang-Il;Oh, Jong-Taek;Oh, Hoo-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제15권4호
    • /
    • pp.175-181
    • /
    • 2007
  • A computer model of a high efficiency refrigeration system equipped with heat storage for reverse cycle-hot gas defrost (the stored heat is used during defrost cycle of the system) is presented. The model was developed based on both theoretical and empirical equations for the compressor, evaporator, condenser and the heat storage equipment. Simulations of the prototype system were carried out to investigate refrigeration system performance under various operating conditions during refrigeration cycles. The simulations of the evaporator during defrost cycles at 30 and $40^{\circ}C$ hot gas refrigerant temperature were also performed which resulted on shorter defrost time but only slight increase in defrost efficiency. These information on energy efficiency and the defrost time required are important in order to avoid excessive parasitic load and temperature rise of the refrigerated room.

시뮬레이션을 통한 지열 히트펌프 시스템과 VRF 시스템의 에너지 성능비교 (Comparison of Energy Performance between Ground-Source Heat Pump System and Variable Refrigerant Flow(VRF) Systems using Simulation)

  • 손병후;임효재;강성재
    • 한국지열·수열에너지학회논문집
    • /
    • 제17권3호
    • /
    • pp.30-40
    • /
    • 2021
  • This paper compares the annual energy performance of four different types of air-conditioning systems in a medium-sized office building. Chiller and boiler, air-cooled VRF, ground-source VRF, and ground-source heat pump systems were selected as the systems to be compared. Specifically, the energy performance of the GSHP system and the ground-source VRF system were compared with each other and also with conventional HVAC systems including the chiller and boiler system and air-cooled VRF system. In order to evaluate and compare the energy performances of four systems for the office building, EnergyPlus, a whole-building energy simulation program, was used. The EnergyPlus simulation results show that both the GSHP and the ground-source VRF systems not only save more energy than the other two systems but also significantly reduce the electric peak demand. These make the GSHP and the VRF systems more desirable energy-efficient HVAC technologies for the utility companies and their clients. It is necessary to analyze the impact of partial load performance of ground-source heat pump and ground-source VRF on the long-term (more than 20 years) performance of ground heat exchangers and entire systems.

Numerical investigation on ballooning and rupture of a Zircaloy tube subjected to high internal pressure and film boiling conditions

  • Van Toan Nguyen;Hyochan Kim;Byoung Jae Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2454-2465
    • /
    • 2023
  • Film boiling may lead to burnout of the heating element. Even though burnout does not occur, the heating element is subject to deformation because it is not sufficiently strong to withstand external loads. In particular, the ballooning and rupture of a tube under film boiling are important phenomena in the field of nuclear reactor safety. If the tube-type cladding of nuclear fuel ruptures owing to high internal pressure and thermal load, radioactive materials inside the cladding are released to the coolant. Therefore, predicting the ballooning and rupture is important. This study presents numerical simulations to predict the ballooning behavior and rupture time of a horizontal tube at high internal pressure under saturated film boiling. To do so, a multi-step coupled simulation of conjugated film boiling heat transfer and ballooning using creep model is adopted. The numerical methods and models are validated against experimental values. Two different nonuniform heat flux distributions and four different internal pressures are considered. The three-step simulation is enough to obtain a convergent result. However, the single-step simulation also successfully predicts the rupture time. This is because the film boiling heat transfer characteristics are slightly affected by the tube geometry related to creep ballooning.

동적 모사를 이용한 에탄 분리탑의 플레어 용량 예측에 관한 연구 (Study on the Flare Load Estimation of the Deethanizer using Dynamic Simulation)

  • 박경태;원왕연;신동일
    • Korean Chemical Engineering Research
    • /
    • 제52권5호
    • /
    • pp.613-619
    • /
    • 2014
  • 화학 공장에서 플레어 시스템은 공장의 안전에 지대한 영향을 주는 아주 중요한 요소이다. 만약, 플레어 시스템이 필요보다 작게 설계 된다면, 위급 상황 발생 시 끔찍한 사고를 유발할 수 있다. 반면, 플레어 시스템이 필요보다 크게 설계하게 된다면 공장을 건설하는데 드는 비용의 증가를 피할 수가 없게 된다. 따라서, 산업계에서는 적절한 플레어 시스템의 설계를 위해 정확한 플레어 배출량을 예측하고자 오랫동안 노력해왔다. 미국석유협회에서는 플레어 배출량 계산을 위한 가이드라인을 제시하였고, 많은 설계 회사들은 정상상태 열 및 물질 수지식을 이용한 방법을 개발하여 플레어 배출량을 예측해 왔다. 하지만, 이러한 방법들은 많은 보수적인 가정들 하에 플레어 배출량을 계산하여 필요보다 크게 설계, 막대한 비용을 초래할 수 있다. 본 연구에서는 기존 방법들이 가지는 문제들을 해결하기 위해 공정제어가 포함된 동적 모사를 통해 플레어 배출량을 계산하는 새로운 절차를 제시하였고, 이 절차에 따라 에탄 분리탑의 배출량을 성공적으로 예측함으로써 절차의 효용성을 증명하였다.

페리미터존의 에어배리어 공조방식에 따른 실내 열환경 평가 (Evaluation of Indoor Thermal Environment According to Air-Barrier Air Conditioning System in Perimeter Zone)

  • 박병윤;함흥돈;손장열
    • 설비공학논문집
    • /
    • 제17권4호
    • /
    • pp.370-376
    • /
    • 2005
  • For the purpose of investigating the effective removal of heating/cooling load from light-weighted building envelope, two air-conditioning systems, conventional parameter air-conditioning system and air-barrier system, are evaluated and compared by both experiment and simulation with six different cases during heating and cooling season. In addition, the characteristics of window-side building thermal load are assessed by varying supply air velocity in order to seek the optimal system operation condition. The results are as follows. 1) Air-barrier system is more effective to remove heating/cooling load at perimeter zone than conventional parameter air-conditioning system. Moreover, the better effectiveness appears during cooling season than during heating season. 2) The experiment during cooling season provides that indoor temperature of air-barrier system shows $1^{\circ}C$ less than that of the conventional system with similar outdoor air temperature profile, and indoor temperature distribution is more uniform throughout the experimented model space. It concludes that air-barrier system can achieve energy saving comparing to the conventional system. 3) The capturing efficiency of air-barrier system is 0.47 on heating season and 0.2 on cooling season with the same supply air volume. It results that the system performs effectively to remove building thermal load, moreover demonstrates high efficiency during cooling season. 4) The simulation results provide that capturing efficiency to evaluate the effective removal of building load from perimeter zone shows high value when supply air velocity is 1 m/s.

연간 성능을 고려한 가정용 태양열-흡수식 히트펌프의 에너지 절약효과 분석 (An Analysis of Energy Savings on the Solar-Absorption Heat Pump Systems for the Residential Use with the consideration of Annual Performance)

  • 이재효;이관수;원승호;이명호
    • 설비공학논문집
    • /
    • 제3권4호
    • /
    • pp.263-275
    • /
    • 1991
  • Studies on the annual performance of three different type of solar-absorption heat pump system (parallel type, series type, and generator type) are carried out by using the computer simulation. These include the calculation of solar energy from the solar collector, and the revision of computer package, developed by Oak Ridge National Laboratory, to predict the annual performance. Finally using weather data and load conditions, the annual performance are obtained. Results show that the annual operating costs of three solar-absorption heat pump systems are almost same values and 44% lower than that of the pure absorption heat pump system. The total annual input energys of solar-absorption heat pump systems are also about 44% lower than that of the pure absorption heat pump. The nominal size of the solar-absorption heat pump systems can be reduced to a value of 55% that of the pure absorption heat pump that would normally be specified under identical conditions.

  • PDF

Dynamic Simulation of Annual Energy Consumption in an Office Building by Thermal Resistance-Capacitance Method

  • Lee, Chang-Sun;Choi, Young-Don
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제6권
    • /
    • pp.1-13
    • /
    • 1998
  • The basic heat transfer process that occurs in a building can best be illustrated by an electrical circuit network. Present paper reports the dynamic simulation of annual energy consumption in an office building by the thermal resistance capacitance network method. Unsteady thermal behaviors and annual energy consumption in an office building were examined in detail by solving the simultaneous circuit equations of thermal network. The results are used to evaluate the accuracy of the modified BIN method for the energy consumption analysis of a large building. Present thermal resistance-capacitance method predicts annual energy consumption of an office building with the same accuracy as that of response factor method. However, the modified BIN method gives 15% lower annual heating load and 25% lower cooling load than those from the present method. Equipment annual energy consumptions for fan, boiler and chiller in the HVAC system are also calculated for various control systems as CAV, VAV, FCU+VAV and FCU+CAV. FCU+CAV system appears to consume minimum annual energy among them.

  • PDF