• 제목/요약/키워드: Heat Load Simulation

검색결과 251건 처리시간 0.028초

낮은 저항의 IH 전용용기를 가열할 수 있는 유도 가열 컨버터와 코일 설계 (Design Methodology of Series Resonant Converter and Coil of Induction Heating Applications for Heating Low Resistance IH-Only Container)

  • 정시훈;박화평;정지훈
    • 전력전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.24-31
    • /
    • 2018
  • An induction heating (IH) resonant converter, as well as its coil design method, is proposed in this study to improve the heat capability of low- and high-resistance IH vessels. Conventional IH resonant converters have been designed only for heating high-resistance containers designed for IH application. Thus, the primary current in the resonant tank becomes extremely high to transfer the rated power when the converter heats the low-resistance vessel. As a result, the rated power cannot be transferred due to overcurrent flows against the rated switch current. Hence, the optimal number of coil turns and proper operating frequency to heat high- and low-resistance vessels are proposed in this study by analyzing an IH load model. Simulation and experimental results using a 2.4 kW prototype resonant converter and its IH coil validate the proposed design.

주거공간 단위가연물의 열역학적 수치해석 모델링에 관한 연구 (A Study for Thermal Mechanism of Residential Combustibles with Numerical Modeling)

  • 안찬솔;김정엽;유용호;권오상;주상현
    • 한국화재소방학회논문지
    • /
    • 제25권6호
    • /
    • pp.58-63
    • /
    • 2011
  • 본 연구는 주거공간에 배치된 가연물의 열역학적 연소모델을 구현하는데 목적이 있다. 화재하중과 화재 강도는 성능설계의 사용이 증가함에 따라 건축물 화재안전 설계에 중요한 요소로 대두되고 있으며, 컴퓨터를 이용한 수치해석을 통해 예측이 가능해 지고 있다. 주거 가연물의 열역학적 연소특성을 예측하기 위해 각 가연물의 수치해석용 모델을 설계하였다. 해석된 결과를 검증하기 위해 수치해석의 결과를 실물 연소실험의 열방출량 결과와 비교하였다. 수치해석을 위해 FDS를 사용하였으며, 난류해석을 위해 LES모델이 사용되었다. 검증결과 열방출율 및 총발열량은 실험결과와 잘 일치함을 확인하였다.

TAP을 적용한 내단열과 외단열구조의 열성능 평가에 관한 연구 (A Study on Thermal Performance Evaluation with TAP (Thermosyphoning Air Panel) in Inside and Outside Insulated Constructions)

  • 이경회;유호천;홍영우;전채휘
    • 태양에너지
    • /
    • 제7권1호
    • /
    • pp.23-29
    • /
    • 1987
  • TAP system, a kind of natural convective space heating collector, has a good heat loss by night. The aim of this paper is to induce and to study an hourly heat flow theory by response factors analysis with TAP in inside and outside insulated construction, to compare and evaluate on thermal performance an hourly natural temperature, heated room temperature and heating load in aboved-mention constructions with computer simulation. The results of the study can be summarized as follows. According that there is no TAP and with TAP, it is inside insulated construction and outside insulated construction, daily natural range of temperature each shows $12.5^{\circ}C$ and $16.7^{\circ}C$, $2.7^{\circ}C$ and $3.7^{\circ}C$, daily heated range of temperature with noramal control heating system each shows $6.6^{\circ}C$ and $12.1^{\circ}C$, $1.7^{\circ}C$ and $3.1^{\circ}C$, heating hours each show 10 hr and 7 hr, 9 hr and 4 hr and heating energy saving percentage in january 123% and 79%, 100% and 40%. Therefore, energy saving percentage shows that outside insulated construction saves about 54% in comparision with inside insulated construction.

  • PDF

태양열 난방 시스템에 적용되는 축열조의 성층화에 관한 연구 (A Study on Thermally Stratied Hot Water Storage Tank in A Solar Heating System)

  • 홍희기;김효경
    • 대한설비공학회지:설비저널
    • /
    • 제15권1호
    • /
    • pp.87-96
    • /
    • 1986
  • An experiment on the devices that enchance the stratification of storage tanks in a solar heat ins system has been carried out. The benefits of thermal stratification in sensible heat storage are to increase the system performance such as the collector efficiency or the fraction of the total load supplied by solar energy. Using the diffuser and the distributor as the stratification enchancement device, the expeliments were perfomed in the different condition of diameter and material of the distributor. As a result of experiments, there exists the diameter of distributor in which the stratification is made maximum under certain design and operation condition. Also it was identified that the kind of distributor material influenced the degree of stratification. Comparing the experimental result to the computational results calculated under the same conditions, the node number N(stratification index) was determined. The results of computer simulation that was performed about the actual solar heating system in Seoul for 24 hours show the relative advantage of stratified over well-mixed storage and the significant improvements in system performance.

  • PDF

Design and Implementation of Green Coastal Lighting System for Entrance to Coastal Pier

  • Jae-Kyung Lee;Jae-Hong Yim
    • 한국항해항만학회지
    • /
    • 제47권2호
    • /
    • pp.85-92
    • /
    • 2023
  • The hardware of an LED lighting control system for coastal lighting at coastal pier entrance consists of a power supply unit, an AVR control unit, a CLCD output unit, an LED control unit, a scenario selection switch unit, and an operation speed display unit. It is made of an 8-channel. The CPU used ATmega128 and the FET was used to control the current signal. To operate the CPU, DC 12V was converted to DC 5V using a regulator 7805. A heat sink was used to remove heat generated in the FET. By connecting the load LED module to the manufactured 8-channel LED lighting control system, the operation was confirmed through various production scenarios. In addition, a control system was designed to show the most suitable color for the atmosphere of the coastal pier according to the input value of temperature and illumination using a fuzzy control system. Computer simulation was then conducted. Results confirmed that fuzzy control did not need to store many data inputs due to characteristics of artificial intelligence and that it could efficiently represent many output values with simple fuzzy rules.

Development of scaling approach based on experimental and CFD data for thermal stratification and mixing induced by steam injection through spargers

  • Xicheng Wang;Dmitry Grishchenko;Pavel Kudinov
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.1052-1065
    • /
    • 2024
  • Advanced Pressurized Water Reactors (APWRs) and Boiling Water Reactors (BWRs) employ a suppression pool as a heat sink to prevent containment overpressure. Steam can be discharged into the pool through multi-hole spargers or blowdown pipes in both normal and accident conditions. Direct Contact Condensation (DCC) creates sources of momentum and heat. The competition between these two sources determines the development of thermal stratification or mixing of the pool. Thermal stratification is of safety concern as it reduces the cooling capability compared to a completely mixed pool condition. In this work we develop a scaling approach to prediction of the thermal stratification in a water pool induced by steam injection through spargers. Experimental data obtained from large-scale pool tests conducted in the PPOOLEX and PANDA facilities, as well as simulation results obtained using validated codes are used to develop the scaling. Two injection orientations, namely radial injection through multi-hole Sparger Head (SH) and vertical injection through Load Reduction Ring (LRR), are considered. We show that the erosion rate of the cold layer can be estimated using the Richardson number. In this work, scaling laws are proposed to estimate both the (i) transient erosion velocity and (ii) the stable position of the thermocline. These scaling laws are then implemented into a 1D model to simulate the thermal behavior of the pool during steam injection through the sparger.

발전용 희박예혼합 가스터빈에서 연소모드변환 시기의 연소특성 해석 (Numerical Analysis of Combustion Characteristics during Mode Transfer Period in a Lean Premixed Gas Turbine for Power Generation)

  • 정재화;서석빈;김종진;차동진;안달홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.279-282
    • /
    • 2002
  • Recently, gas turbines for power generation adopt multistage DLN(Dry Low NOx) type combustion, where diffusion combustion is applied at low load and, with increase in load, the combustion mode is changed to lean premixed combustion to reduce NOx emissive concentration. However, during the mode changeover from diffusion to premixed flame, unfavorable phenomena, such as flashback, high amplitude combustion oscillations, or thermal damage of combustor parts could frequently occur. In the present study, to apply for the analysis of such unfavorable phenomena, three-dimensional CFD investigations are carried out to compare the detailed flow characteristics and temperature distribution inside the gas turbine combustor before and after combustion mode changeover. The fuel considered here is pure methane gas. A standard $k-{\varepsilon}$ turbulence model with wall function and a P-N type radiation heat transfer model, have been utilized. To analyze the complex geometric effects of combustor parts on combustion characteristics, fuel nozzles, a swirl vane f3r fuel-air mixing, and cooling air holes on the combustor liner wall, are included in this simulation.

  • PDF

열간 단조 공정의 금형 수명 평가 (Evaluation of die life during hot forging process)

  • 이현철;박태준;고대철;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.1051-1055
    • /
    • 1997
  • Hot forging is widely used in the manufacturing of automotive component. The mechanical, thermal load and thermal softening which is happened by the high temperature die in hot forging. Tool life of hot forging decreases considerably due to the softening of the surface layer of a tool caused by a high thermal load and long contact time between the tool and workpieces. The service life of tools in hot forging process is to a large extent limited by wear, heat crack, plastic deformation. These are one of the main factors affecting die accuracy and tool life. It is desired to predict tool life by developing life prediction method by FE-simulation. Lots of researches have been done into the life prediction of cold forming die, and the results of those researches were trustworthy, but there have been little applications of hot forming die. That is because hot forming process has many factors influencing tool life, and there was not accurate in-process data. In this research, life prediction of hot forming die by wear analysis and plastic deformation has been carried out. To predict tool life, by experiment of tempering of die, tempering curve was obtained and hardness express a function of main tempering curve.

  • PDF

대학 건물에 적용한 열 차단 필름이 냉방부하에 미치는 영향 평가 (The Evaluation of Cooling Load by The Window Film Insulation in College Building)

  • 김석현;강수현;유시완;조영흠
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.549-552
    • /
    • 2012
  • Recently the world is trying to reduce carbon emissions for global warming. Reducing use of fossil fuels can decrease carbon emission. In this reason the construction field has tried to reduce the use of fossil fuels relating to heating and cooling of buildings. An energy loss through the window system is about 10 to 30 percent of energy consumption of the whole building. The use of window film insulation is increasing to control the heat loss at the windows. The window film insulation absorbs solar radiation and makes the surface temperature of windows high. In this study, window surface temperature is measured, and an impact on indoor air is identified after attaching window film insulation. Finally, we found that cooling load decreases through simulation.

  • PDF

선체 박판구조의 용접변형 제어에 관한 연구(I) (On the Weld-Induced Deformation Control of Ship's Thin Plate Block (I))

  • 이주성;김철호
    • 대한조선학회논문집
    • /
    • 제44권5호
    • /
    • pp.496-503
    • /
    • 2007
  • Although weld-induced deformation is inevitable in shipbuilding, it is important to reduce it as low as possible during fabrication for a more efficient production of ships' blocks. The weld-induced deformation is more serious in thin plates than in thick plates because heat affect zone of thin plates is wider than that of thick plates, and in addition internal and external constraints much more influence upon weld-induced deformation of thin plates. This paper deals with the application of the mechanical tensioning method to butt weld of thin plates to reduce the transverse and longitudinal deformation. in order to investigate the quantitative effect of tensioning method upon the reduction of angular deformation and shrinkage in longitudinal and transverse direction of weld line, butt welding test have been carried out for several thin plate specimens with varying plate thickness and magnitude of tensile load. Numerical simulation has been also carried out to compare the weld-induced deformation and residual stress. From the present study, it has been found that the tensioning method is very effective on reduction of weld-induced residual stress as well as weld-induced deformation.