• Title/Summary/Keyword: Heat Load Analysis

Search Result 629, Processing Time 0.034 seconds

Resonance analysis of cantilever porous graphene platelet reinforced pipe under external load

  • Huang, Qinghua;Yu, Xinping;Lv, Jun;Zhou, Jilie;Elvenia, Marischa Ray
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.409-423
    • /
    • 2022
  • Nowadays, there is a high demand for great structural implementation and multifunctionality with excellent mechanical properties. The porous structures reinforced by graphene platelets (GPLs) having valuable properties, such as heat resistance, lightweight, and excellent energy absorption, have been considerably used in different engineering implementations. However, stiffness of porous structures reduces significantly, due to the internal cavities, by adding GPLs into porous medium, effective mechanical properties of the porous structure considerably enhance. This paper is relating to vibration analysis of fluidconveying cantilever porous graphene platelet reinforced (GPLR) pipe with fractional viscoelastic model resting on foundations. A dynamical model of cantilever porous GPLR pipes conveying fluid and resting on a foundation is proposed, and the vibration, natural frequencies and primary resonant of such a system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with the fractional viscoelastic model is used to govern the construction relation of nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied to the pipe and the excitation frequency is close to the first natural frequency. The governing equation for transverse motions of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.

Visualization and 3D Numerical Analysis of the Circulation Flow of the Neutron Moderator in a Heavy-Water Nuclear Reactor (가압중수형 원자로의 중성자 감속재 순환 유동가시화와 삼차원 전산해석)

  • Eom, Tae-Kwang;Lee, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.189-196
    • /
    • 2012
  • The heavy moderator acts as the ultimate heat-sink in an operating CANDU reactor. HUKINS has been developed to investigate moderator flow patterns. HUKINS consists of a 38.4-mm-thick cylindrical shell with a 0.95 m inner diameter and 88 sus-tubes that produce a total heat of 10 kW. A chemical visualization method was selected to estimate the occurrence of typical moderator flow patterns. Momentum-dominated flow, mixed flow, and buoyancy-dominated flow are detected under conditions of a heat load of 7.7 kW and input mass flow rates of 4, 7, and 11 L/min. The experimental results are similar to the results of a CFD simulation that consisted of approximately 1.9 million grids and was conducted using the k-${\varepsilon}$ turbulence model. Therefore, both the present experiments and simulations using HUKINS, a 1/8-scale model, represent all three important flow patterns expected in the real CANDU6 reference reactor. Thus, it has been demonstrated that HUKINS could be useful in the study of CANDU6 moderator circulation.

Behaviors of the High-profile Arch Soil-steel Structure During Construction (높은 아치형 지중강판 구조물의 시공 중 거동 분석)

  • 이종구;조성민;김경석;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.71-84
    • /
    • 2003
  • The metallic shell of soil-steel structures are so weak in bending moment that it should sustain the applied load by the interaction of the backfill soil around the structures. The shell can be subjected to excessive bending moment during side backfilling or under live-load when the soil cover is less than the minimum value. The current design code specifies the allowable deformation and Duncan(1979) and McGrath et al.(2001) suggested the strength analysis methods to limit the moments by the plastic capacity of the shell. However, the allowable deformation is an empirically determined value and the strength analysis methods are based on the results of FE analysis, hence the experimental verification is necessary. In this study, the full-scale tests were conducted on the high-profile arch to investigate its behaviors during backfilling and under static live-loads. Based on the measurements, the allowable deformation of the tested structure could be estimated to be 1.45% of rise, which is smaller than the specified allowable deformation. The comparison between the measurements and the results of two strength analyses indicate that Duncan underestimates the earth-load moment and overestimates the live-load moment, while McGrath et al. predicts both values close to the actual values. However, as the predicted factors of safeties using two methods coincide with the actual factor of safety, it can be concluded that both methods can predict the structural stability under live-loads adequately when the cover is less than the minimum.

Variation of Bilinear Stress-Crack Opening Relation for Tensile Cracking of Concrete at Early Ages (초기재령에서 콘크리트 인장균열에 대한 쌍선형 응력-균열 개구 관계의 변화)

  • Kwon, Seung-Hee;Choi, Kang;Lee, Yun;Park, Hong-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.427-435
    • /
    • 2010
  • One of the most vulnerable properties in concrete is tensile cracking, which usually happens at early ages due to hydration heat and shrinkage. In order to accurately predict the early age cracking, it needs to find out how stress-crack opening relation is varying over time. In this study, inverse analyses were performed with the existing experimental data for wedge-splitting tests, and the parameters of the softening curve for the stress-crack opening relation were determined from the best fits of the measured load-CMOD curves. Based on the optimized softening curve, variation of fracture energy over time was first examined, and a model for the stress-crack opening relation at early ages was suggested considering the found feature of the fracture energy. The model was verified by comparisons of the peak loads, CMODs at peak loads, and fracture energies obtained from the experiments and the inverse analysis.

Determining Mechanical Properties of ZrO2 Composite Ceramics by Weibull Statistical Analysis (와이블 통계 해석에 의한 ZrO2 복합 세라믹스의 기계적 특성)

  • Kim, Seon Jin;Kim, Dae Sik;Nam, Ki Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.955-962
    • /
    • 2015
  • The Vickers test can be used for all types of materials, and it has one of the widest scales among hardness tests. The hardness may be considered as a probability variable when evaluating the mechanical properties of materials. In this study, we investigate the statistical properties of the bending strength and Vickers hardness in $ZrO_2$ monolithic and $ZrO_2/SiC$ composites depending on the amount of $TiO_2$ additives. The bending strength and Vickers hardness were found to agree well with the Weibull probability distribution. We evaluate the scale parameter and shape parameter in as-received $ZrO_2$ and $ZrO_2/SiC/TiO_2$ ceramics, as well as their heat treated ceramics. We also evaluate the parameters in accordance with the increase in in the indentation load.

A Study on Crack Control of Early-aged Reinforced Concrete Rahmen Bridge (초기재령 철근큰크리트 라멘교의 균열제어에 관한 연구)

  • Jung Hee-Hyo;Lee Sung-Yeol;Kim Woo-Jung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.15-25
    • /
    • 2006
  • The researches on the early-aged concrete hydration process and the techniques for the early-aged concrete crack control mainly have been focused and developed on the massive concretes in both experimental and numerical studies. However, those researches for relatively thin members such as the upper slab of the reinforced concrete rahmen bridge have nearly been attempted. In this study, a designing technique for crack controlling in the thin members of the early-aged reinforced concrete rahmen bridges based on measured temperature history, strength revelation model and sinkage model is proposed. A method of calculating the reinforcing bar area for crack controlling is also proposed and it is found that the distributing bars under the design loads become the main reinforcing bars in the temperature stress analysis of the early-aged reinforced concrete rahmen bridges. It is shown that the proposed analysis technique is able to use the design of crack control for the early-aged reinforced concrete rahmen bridge.

Analysis of Furnace Conditions with Waste Plastics Injection into Blast Furnace (폐플라스틱의 吹入에 따른 高爐 爐況解析)

  • 허남환;백찬영;임창희
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.23-30
    • /
    • 2000
  • Since most of the waste plastics are incinerated and landfilled for the plastic treatment, the environmental friendly processes must be introduced. The plastic utilization of plastic to the blast furnace as a substitutional fuel was developed as a useful recycling method of waste plastics, and commercialized in several ironmaking company in Europe and Japan. Present study was carried out to understand the effect of plastic injection on blast furnace process continuously by using the foundry blast furnace in POSCO. The coke replacement ratio turned out to be 0.98 with the waste plastic injection up to 13.8 kg/thm of injection rate, and there were no significant effect of the kinds of injection plastics on the replacement ratio in this test operation. The permeability in the furnace became worse and the heat load in the lower part of blast furnace was increased with increasing the injection rate of waste plastics. As the rate of plastic injection were increased, the top gas utilization and shaft efficiency were also decreased from the Rist diagram analysis.

  • PDF

Optimal Design of Urban MICROGRID using Economical Analysis Program (경제성분석 프로그램을 이용한 도심형 마이크로그리드 최적 설계)

  • Seung-Duck, Yu;SungWoo, Yim;Youseok, Lim;SungWook, Hwang;JuHak, Lee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.69-72
    • /
    • 2022
  • This paper actually investigates the load on major large-scale buildings in the downtown area, examines the economic feasibility of installing PV and ESS in a microgrid target building, and evaluates whether an electric vehicle capable of V2G through two buildings is effective as an economical analysis program (HOMER) was analyzed using. It is economical to install a mixture of ESS rather than using the whole PV, and it is shown that if there is an electric vehicle using the V2G function of EV, there is an economic effect to replace the PV. So that Incentives and policies are needed to replace a large area of PV and utilize the existing parking lot to lead EV as a resource of the microgrid. Currently, P2X technology that stores power as ESS or converts it to other energy to control when surplus renewable energy occurs in large-capacity solar power plants and wind farms, etc. This is being applied, and efforts are being made to maintain the stability of the system through the management of surplus power, such as replacing thermal energy through a heat pump. Due to the increase in electric vehicles, which were recognized only as a means of transportation, technologies for using electric vehicles are developing. Accordingly, existing gas stations do not only supply traditional chemical fuels, but electricity, and super stations that also produce electricity have appeared. Super Station is a new concept power plant that can produce and store electricity using solar power, ESS, V2G, and P2G. To take advantage of this, research on an urban microgrid that forms an independent system by tying a large building and several buildings together and supplies power through a super station around the microgrid is in full swing.

Can Threatened Moral Self Make People Prefer Ecological Product? - An Eye Tracking Research based on Chinese Face Consciousness

  • Shi, Zhuomin;Zheng, Wanyi;Yang, Ning
    • Asia Marketing Journal
    • /
    • v.17 no.4
    • /
    • pp.21-42
    • /
    • 2016
  • Purpose: Social influence has a decisive role in shaping a person's cognition and behavior. Chinese face consciousness, including moral component, is an important part of Chinese traditional culture, which influences people to implement moral behavior. With both eye-tracking technology and traditional questionnaire, this research aims to explore people's moral psychology and the psychological processing mechanisms of Chinese face consciousness, as well as the impact of Chinese face consciousness on the preference for the ecological product. Method and Data: 75 college and MBA students' eye movement data were collected when they read different kinds of moral materials, as well as data from the subsequent questionnaires. To test the hypothesis, ANOVA analysis and Heat Map analysis were performed. Besides, the PROCESS of bootstrap was used to test mediation effect. Findings: The results reveal that: 1. Compared to the moral-situation reading, when subjects read immoral situations, they need more processing time due to the moral dissonance and cognitive load. 2. Compared to the control condition, when threatened moral self is primed, subjects prefer to choose ecological product. 3. Protective face orientation is the mediator between threatened moral self and preference to ecological product. Key Contributions: First, this study broadens the use of eye-tracking technology in marketing and demonstrates a better understanding of the relationship between morality and consumer behavior in a more scientific way. Second, this study not only distinguishes the meanings between "protective face orientation" and "acquisitive face orientation", but also innovatively validates that when moral self is threatened, consumers tend to choose ecological product as moral compensation in order to protect their face. It can shed light on the promotion of ecological product in practical applications.

A Study on the Structural Design of Permeable Asphalt Pavement (투수성 아스팔트포장 구조설계방법에 관한 연구)

  • Lee, Soo-Hyung;Yoo, In-Kyoon;Kim, Je-Won
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.39-49
    • /
    • 2011
  • The porous pavement system is widely considered very effective in urban street because of its various benefits on safety and environment, but the pavement thickness design system has not been established yet. In porous pavement system. rainwater penetrates to the subgrade through porous pavements layers. Porous pavements are expected to reduce or alleviate the problems caused by impermeable pavement layer such as flood damage due to heavy rain in the city, drainage load, disorder in ecosystem, and heat island. However, its structural design methods in traffic roads has not been made mainly because of not being able to consider adequately the effect of rainwater on subgrade strength. In this study, structural design method of porous pavements is suggested after considering the subgrade weakness due to rainwater and numerical mechanical analysis. It is noted that elastic modulus of subgrade is reduced by 20% as subgrade moisture content is increased by 2% at optimum moisture content in the literature review. As a result of both finite element analysis and strength loss of subgrade by the existing design method, it is necessary to increase subbase thickness about 30cm in porous pavements compared with the existing traffic road pavement system. It is similar to premium thickness of structural design of porous pavements in Japan.