• Title/Summary/Keyword: Heat Insulation Curing

Search Result 43, Processing Time 0.018 seconds

A Fundamental Study on the Quality Improvement of Lightweight Foamed Concrete with Admixture Types (혼화재료에 의한 경량기포 콘크리트의 품질향상에 관한 기초적 연구)

  • Shin Jae-Kyung;Jeong Kwang-Bok;Lee Youl-Koo;Lee Gun-Cheol;Yoon Gi-Won;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.35-38
    • /
    • 2006
  • This study investigated fundamental properties of lightweight foamed concrete using cement kiln dust (CKD) and both fly ash(FA) and stability agent. Test results showed that concrete incorporating more amounts of admixture decreased slump flow and it caused increase of superplasiticizer in order to secure the fluidity performance. In addition concrete adding stability agent showed stable flow state, resisting segregation of materials and decreasing bleeding capacity. Sinking depth of concrete incorporating 20% of CKD and adding 0.002% of stability agent was indicated at 0mm. For the properties of hardened concrete. compressive strength of concrete incorporating CKD declined due to a lower appearance density, compared with other specimens. The difference of that was not very significant and the value of ail specimen was higher than KS range. Moreover strength of concrete incorporating CKD was even higher at curing temperature $5^{\circ}C$. Tensile strength ratio of concrete incorporating CKD was indicated between 0.50 to 0.59, which is higher value than control concrete. Heat conductivity of concrete incorporating FA was under the KS range while concrete incorporating 20% of CKD was satisfied in KS. Concrete adding stability agent improved insulation performance due to the lower heat conductivity. In conclusion, it is possible that concrete incorporating 20% of CKD and adding 0.002% of stability agent can secure high quality of lightweight foamed concrete.

  • PDF

A Study on the Development of a Dry P0SCO E&C Fire Board Method with High Fire Resistance (건식화 P0SCO E&C Fire Board 공법 개발에 관한 연구)

  • Kim, Woo-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.721-724
    • /
    • 2008
  • The present study was to develop a dry PFB method similar to the existing gypsum board construction method in order to apply the existing wet PFB method that uses fire.resistant adhesive. It was found that the existing wet method can produce concrete compressive strength of 80MPa and fire resistance of 3 hours with 30mm PF boards. The goal of development in this study was fire resistance of 3 hours through dry construction of 15mm fire resistant boards. The results of fire resistance test showed an increase in thermal durability and thermal strain. It is believed that inorganic fiber reduces thermal strain, and lowers heat insulation performance by 15% or less. This suggests that heat insulation performance was improved by the change in the inner composition of PF board resulting from the adjustment of Al:Si mol ratio, high temperature molding, and dry curing. According to the results of fire resistance test, when the dry PF method was applied, the temperature of the main reinforcing bar was 116$^\circ$C in 15mm, 103.8$^\circ$C in 20mm, and 94$^\circ$C in 25mm, and these results satisfied the current standards for fire resistance control presented by the Ministry of Land, Transport and Maritime Affairs. When a 3 hour fire resistance test was performed and the external properties of the specimen were examined, the outermost gypsum board hardly remained and internal PF board maintained its form without thermal strain.

  • PDF

Effect of perlite powder on properties of structural lightweight concrete with perlite aggregate

  • Yan, Gongxing;Al-Mulali, Mohammed Zuhear;Madadi, Amirhossein;Albaijan, Ibrahim;Ali, H. Elhosiny;Algarni, H.;Le, Binh Nguyen;Assilzadeh, Hamid
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.393-411
    • /
    • 2022
  • A high-performance reactive powder concrete (RPC) has been readied alongside river sand, with 1.25 mm particle size when under the condition of 80C steam curing. As a heat and sound insulation, expanded perlite aggregate (EPA) provides economic advantages in building. Concrete containing EPA is examined in terms of cement types (CEM II 32.5R and CEM I 42.5R), doses (0, 2%, 4% and 6%) as well as replacement rates in this research study. The compressive and density of concrete were used in the testing. At the end of the 28-day period, destructive and nondestructive tests were performed on cube specimens of 150 mm150 mm150 mm. The concrete density is not decreased with the addition of more perlite (from 45 to 60 percent), since the enlarged perlite has a very low barrier to crushing. To get a homogenous and fluid concrete mix, longer mixing times for all the mix components are necessary due to the higher amount of perlite. As a result, it is not suggested to use greater volumes of this aggregate in RPC. In the presence of de-icing salt, the lightweight RPC exhibits excellent freeze-thaw resistance (mass is less than 0.2 kg/m2). The addition of perlite strengthens the aggregate-matrix contact, but there is no apparent ITZ. An increased compressive strength was seen in concretes containing expanded perlite powder and steel fibers with good performance.